Biosynthesis of the Pel exopolysaccharide in Pseudomonas aeruginosa requires all seven genes of the operon. The periplasmic modification enzyme PelA contains a C-terminal deacetylase domain that is necessary for Pel-dependent biofilm formation. Herein, we show that extracellular Pel is not produced by a P.
View Article and Find Full Text PDFPel exopolysaccharide biosynthetic loci are phylogenetically widespread biofilm matrix determinants in bacteria. In Pseudomonas aeruginosa, Pel is crucial for cell-to-cell interactions and reducing susceptibility to antibiotic and mucolytic treatments. While genes encoding glycoside hydrolases have long been linked to biofilm exopolysaccharide biosynthesis, their physiological role in biofilm development is unclear.
View Article and Find Full Text PDFThe genetic capacity to synthesize the biofilm matrix exopolysaccharide Pel is widespread among Gram-negative and Gram-positive bacteria. However, its exact chemical structure has been challenging to determine. Using a Pseudomonas aeruginosa strain engineered to overproduce Pel, improvements to the isolation procedure, and selective hydrolysis with the glycoside hydrolase PelA, we demonstrate that Pel is a partially de-N-acetylated linear polymer of α-1,4-N-acetylgalactosamine comprised predominantly of dimeric repeats of galactosamine and N-acetylgalactosamine.
View Article and Find Full Text PDFPel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of biofilms. The operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of gene clusters has helped us identify an additional gene, , that is present adjacent to in >100 different bacterial species.
View Article and Find Full Text PDFOur understanding of the biofilm matrix components utilized by Gram-positive bacteria, and the signalling pathways that regulate their production are largely unknown. In a companion study, we developed a computational pipeline for the unbiased identification of homologous bacterial operons and applied this algorithm to the analysis of synthase-dependent exopolysaccharide biosynthetic systems. Here, we explore the finding that many species of Gram-positive bacteria have operons with similarity to the Pseudomonas aeruginosa pel locus.
View Article and Find Full Text PDF