Publications by authors named "Erroll Rueckert"

Article Synopsis
  • This study examines the pathophysiology of COVID-19 by analyzing single-cell and spatial atlases from various organ autopsy samples of individuals who died from the virus.
  • Findings revealed significant changes in lung tissue, including impaired tissue regeneration and inflammation, indicating how SARS-CoV-2 affects different cell types.
  • The research provides crucial insights into the biological impact of severe COVID-19, aiding in the development of potential new treatments.
View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic has led to over 1 million deaths worldwide, primarily due to severe lung injuries and multiple organ failures, but there is limited understanding of the immune responses involved in COVID-19.
  • Researchers collected and analyzed over 420 tissue samples from various organs of 17 COVID-19 victims, utilizing advanced techniques like RNA sequencing to map out cellular changes related to their illness.
  • Significant findings include alterations in lung tissue cell types, such as the increase of specific progenitor cells and myofibroblasts, indicating impaired tissue repair and failed regenerative processes in severely damaged lungs.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how SARS-CoV-2 affects the lungs at different severity levels by analyzing autopsy samples from 24 patients who died from the virus.
  • It identifies two categories of patients: those with high viral loads showing strong immune responses and specific macrophage types, and those with low viral loads exhibiting varied responses and signs of lung recovery.
  • The research also highlights that the spatial distribution of the virus and immune responses within the lungs is heterogeneous, with different patterns of interferon response genes linked to virus presence.
View Article and Find Full Text PDF

Objectives: Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma with a heterogenous genetic landscape that can require multiple assays to characterize. We reviewed a 1-step RNA-based assay to determine cell of origin (COO), detect translocations, and identify mutations and to assess the role of the assay in diagnosis.

Methods: Using a single custom Archer FusionPlex Lymphoma panel, we performed anchored multiplex polymerase chain reaction-based RNA sequencing on 41 cases of de novo DLBCL.

View Article and Find Full Text PDF

The relationship of SARS-CoV-2 lung infection and severity of pulmonary disease is not fully understood. We analyzed autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter- and intra- patient heterogeneity of pulmonary virus infection. There was a spectrum of high and low virus cases that was associated with duration of disease and activation of interferon pathway genes.

View Article and Find Full Text PDF

Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila.

View Article and Find Full Text PDF

The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP.

View Article and Find Full Text PDF

A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA.

View Article and Find Full Text PDF