Background/objectives: Telomerase reverse transcriptase (TERT) is the catalytic subunit of the telomerase enzyme responsible for telomere length maintenance and is an important cancer hallmark. Our study aimed to clarify the mRNA expression of TERT in peritoneal mesothelioma (PeM), and to explore the relationship between its expression and the clinicopathological parameters and prognosis of patients with PeM.
Methods: In a cohort of 13 MpeM patients, we evaluated histotype, nuclear grade, mitotic count, necrosis, inflammation, Ki67, BAP1, MTAP and p16 expression by immunohistochemistry, / status by FISH and TERT mRNA expression by RNAscope.
Correction for ' HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis' by C. Di Salvo , , 2024, , 10323-10338, https://doi.org/10.
View Article and Find Full Text PDF: Growing evidence highlights the relevance of the microbiota-gut-brain axis in Alzheimer's disease (AD). AD patients display gut dysbiosis, altered intestinal barrier and enteric inflammation that, besides bowel symptoms, can contribute to brain pathology. In this context, the modulation of gut microbiota is emerging as a therapeutical option to halt or slow down central pathology.
View Article and Find Full Text PDFThe autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain.
View Article and Find Full Text PDFSeveral studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders.
View Article and Find Full Text PDFGlioblastomas are among the deadliest human cancers and are highly vascularized. Angiogenesis is dynamic during brain development, almost quiescent in the adult brain but reactivated in vascular-dependent CNS pathologies, including brain tumors. The oncofetal axis describes the reactivation of fetal programs in tumors, but its relevance in endothelial and perivascular cells of the human brain vasculature in glial brain tumors is unexplored.
View Article and Find Full Text PDFDermatomyositis (DM) and immune-mediated necrotizing myopathy (IMNM) are two rare diseases belonging to the group of idiopathic inflammatory myopathies (IIM). Muscle involvement in DM is characterized by perifascicular atrophy and poor myofiber necrosis, while IMNM is characterized by myofiber necrosis with scarce inflammatory infiltrates. Muscle biopsies and laboratory tests are helpful in diagnosis, but currently, few biomarkers of disease activity and progression are available.
View Article and Find Full Text PDFBackground: Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined.
Methods: We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31 vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells.
View Article and Find Full Text PDFBackground: In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood-brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage.
View Article and Find Full Text PDFSuccessful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk.
View Article and Find Full Text PDFMounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment.
View Article and Find Full Text PDFObjectives: To study the phenotype of macrophage infiltrates and their role in angiogenesis in different idiopathic inflammatory myopathies (IIMs).
Methods: The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+) and regenerating (NCAM+) myofibres were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ immune mediated necrotizing myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, DM, PM, PM with mitochondrial pathology, sporadic IBM, scleromyositis, and anti-synthetase syndrome. The samples were compared with mitochondrial myopathy and control muscle samples.
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a 'microvasculopathy', which includes different levels of neurovascular unit (NVU) dysfunction, including blood-brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU.
View Article and Find Full Text PDFThe myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes.
View Article and Find Full Text PDFIrisin is a myokine produced by skeletal muscle during exercise in both mice and humans. We previously showed that irisin treatment ameliorates immobility-induced osteoporosis and muscular atrophy in mice. Data in humans showed a positive association between irisin and bone mineral density (BMD) in athletes and a population of healthy children.
View Article and Find Full Text PDFVanadium, a transition series metal released during some industrial activities, induces oxidative stress and lipid peroxidation. Ameliorative effect of a pure compound from the methanolic extract of leaves, code-named MIMO2, in 14-day old mice administered with vanadium (as sodium metavanadate 3 mg/kg) for 2 weeks was assessed. Results from body weight monitoring, muscular strength, and open field showed slight reduction in body weight and locomotion deficit in vanadium-exposed mice, ameliorated with MIMO2 co-administration.
View Article and Find Full Text PDFPericytes are integral part of neurovascular unit and play a role in the maintenance of blood-brain barrier integrity, angiogenesis, and cerebral blood flow regulation. Despite their important functional roles, a univocal phenotypic identification is still emerging also for the lack of a "pan-pericyte" marker. In the present study, we describe in detail the method for performing fluorescence immunohistochemistry on thick free-floating sections from human fetal brain in high resolution laser confocal microscopy.
View Article and Find Full Text PDFP-Glycoprotein (P-gp) is a 170-kDa transmembrane glycoprotein that works as an efflux pump and confers multidrug resistance (MDR) in normal tissues and tumors, including nervous tissues and brain tumors. In the developing telencephalon, the endothelial expression of P-gp, and the subcellular localization of the transporter at the luminal endothelial cell (EC) plasma membrane are early hallmarks of blood-brain barrier (BBB) differentiation and suggest a functional BBB activity that may complement the placental barrier function and the expression of P-gp at the blood-placental interface. In early fetal ages, P-gp has also been immunolocalized on radial glia cells (RGCs), located in the proliferative ventricular zone (VZ) of the dorsal telencephalon and now considered to be neural progenitor cells (NPCs).
View Article and Find Full Text PDFBackground And Aim: Patients with Parkinson's disease (PD) are often characterized by functional gastrointestinal disorders. Such disturbances can occur at all stages of PD and precede the typical motor symptoms of the disease by many years. However, the morphological alterations associated with intestinal disturbances in PD are undetermined.
View Article and Find Full Text PDF: Systemic Lupus Erythematosus (SLE) is a connective tissue disease characterized by a wide range of pleomorphic pictures, including mucocutaneous, renal, musculoskeletal and neurological symptoms. It involves oral tissues, with hyposalivation, tooth decay, gingivitis, angular cheilitis, ulcers and glossitis. Temporomandibular disorders represent a heterogeneous group of inflammatory or degenerative diseases of the stomatognatic system, with algic and/or dysfunctional clinical features involving temporomandibular joint (TMJ) and related masticatory muscles.
View Article and Find Full Text PDF