Publications by authors named "Eronen T"

Purpose: Cardiovascular autonomic neuropathy remains underdiagnosed in type 1 diabetes mellitus, posing a risk for severe complications, particularly in patients with lowered V̇O, compared to controls. This study aimed to determine whether heart rate variability during cardiovascular autonomic reflex tests reveals early signs of cardiovascular autonomic neuropathy in patients with uncomplicated type 1 diabetes mellitus and normal cardiovascular fitness, compared to healthy controls.

Methods: A type 1 diabetes mellitus group (n = 14) with no other diagnosed diseases (diabetes duration 15 ± 7 years) and a control group (n = 31) underwent deep breathing test, passive orthostatic test, and cardiopulmonary exercise test.

View Article and Find Full Text PDF
Article Synopsis
  • * The new mass data, with a precision around 1 keV/c², supports the robustness of the N=50 neutron shell closure and enables comparisons with advanced theoretical models for understanding nuclear properties.
  • * The study also highlights the challenges faced by theoretical approaches, like ab initio calculations and density functional theory, in accurately predicting ground-state properties in the silver isotopic chain near the proton dripline.
View Article and Find Full Text PDF

Space radiation is a notable hazard for long-duration human spaceflight. Associated risks include cancer, cataracts, degenerative diseases and tissue reactions from large, acute exposures. Space radiation originates from diverse sources, including galactic cosmic rays, trapped-particle (Van Allen) belts and solar-particle events.

View Article and Find Full Text PDF

The absolute mass of was determined using the phase-imaging ion-cyclotron-resonance technique with the JYFLTRAP double Penning trap mass spectrometer. A more precise value for the mass of is essential for providing potential indications of physics beyond the Standard Model through high-precision isotope shift measurements of Sr atomic transition frequencies. The mass excess of was refined to be from high-precision cyclotron-frequency-ratio measurements with a relative precision of .

View Article and Find Full Text PDF

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV.

View Article and Find Full Text PDF

Collinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15)  fm.

View Article and Find Full Text PDF

The observation of a weak proton-emission branch in the decay of the 3174-keV Co isomeric state marked the discovery of proton radioactivity in atomic nuclei in 1970. Here we show, based on the partial half-lives and the decay energies of the possible proton-emission branches, that the exceptionally high angular momentum barriers, [Formula: see text] and [Formula: see text], play a key role in hindering the proton radioactivity from Co, making them very challenging to observe and calculate. Indeed, experiments had to wait decades for significant advances in accelerator facilities and multi-faceted state-of-the-art decay stations to gain full access to all observables.

View Article and Find Full Text PDF

In a measurement of isomeric yield-ratios in fission, the Phase-Imaging Ion-Cyclotron-Resonance technique, which projects the radial motions of ions in the Penning trap (JYFLTRAP) onto a position-sensitive micro-channel plate detector, has been applied. To obtain the yield ratio, that is the relative population of two states of an isomer pair, a novel analysis procedure has been developed to determine the number of detected ions in each state, as well as corrections for the detector efficiency and decay losses. In order to determine the population of the states in cases where their mass difference is too small to reach full separation, a Bayesian Gaussian Mixture model was implemented.

View Article and Find Full Text PDF

In type 1 diabetes, it is important to prevent diabetes-related complications and postural instability may be one clinically observable manifestation early on. This study was set to investigate differences between type 1 diabetics and healthy controls in variables of instrumented posturography assessment to inform about the potential of the assessment in early detection of diabetes-related complications. Eighteen type 1 diabetics with no apparent complications (HbA1c = 58 ± 9 mmol/L, diabetes duration = 15 ± 7 years) and 35 healthy controls underwent six 1-min two feet standing postural stability tests on a force plate.

View Article and Find Full Text PDF

The impact of nuclear deformation can been seen in the systematics of nuclear charge radii, with radii generally expanding with increasing deformation. In this Letter, we present a detailed analysis of the precise relationship between nuclear quadrupole deformation and the nuclear size. Our approach combines the first measurements of the changes in the mean-square charge radii of well-deformed palladium isotopes between A=98 and A=118 with nuclear density functional calculations using Fayans functionals, specifically Fy(std) and Fy(Δr,HFB), and the UNEDF2 functional.

View Article and Find Full Text PDF

The ground state to ground state electron-capture Q value of ^{159}Dy (3/2^{-}) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent ^{159}Dy and the decay daughter ^{159}Tb ions using the novel phase-imaging ion-cyclotron resonance technique.

View Article and Find Full Text PDF

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing.

View Article and Find Full Text PDF

The present study investigated whether athletes can be classified as responders or non-responders based on their individual change in total hemoglobin mass (tHb-mass) following altitude training while also identifying the potential factors that may affect responsiveness to altitude exposure. Measurements were completed with 59 elite endurance athletes who participated in national team altitude training camps. Fifteen athletes participated in the altitude training camp at least twice.

View Article and Find Full Text PDF

The ground-state-to-ground-state β-decay Q value of ^{135}Cs(7/2^{+})→^{135}Ba(3/2^{+}) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between ^{135}Cs(7/2^{+}) and ^{135}Ba(3/2^{+}).

View Article and Find Full Text PDF

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate.

View Article and Find Full Text PDF

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.

View Article and Find Full Text PDF

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb β decays have been determined using the total absorption γ-ray spectroscopy technique.

View Article and Find Full Text PDF
Article Synopsis
  • Precision measurements of cosmic ray positrons up to 1 TeV were gathered by the Alpha Magnetic Spectrometer aboard the International Space Station, analyzing 1.9 million positrons.
  • A significant excess of positrons begins at around 25.2 GeV, followed by a sharp decrease above approximately 284 GeV, indicating a complex energy dependency.
  • The data suggests that at high energies, positrons mainly come from either dark matter annihilation or other astrophysical sources, with a notable energy cutoff of the source term established at about 810 GeV.
View Article and Find Full Text PDF

We present high-statistics, precision measurements of the detailed time and energy dependence of the primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017 in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar maximum has been investigated in detail by leptons alone. Based on 23.

View Article and Find Full Text PDF

We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1×10^{9} events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014.

View Article and Find Full Text PDF

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably.

View Article and Find Full Text PDF
Article Synopsis
  • * The fluxes of Li and B show a similar rigidity dependence above 7 GV, and all three (Li, Be, B) share this behavior above 30 GV, with a measured Li/Be ratio of 2.0±0.1.
  • * Unlike primary cosmic rays, which include elements like He, C, and O, secondary cosmic rays show a different pattern; specifically, secondary cosmic rays become harder than primary cosmic rays when exceeding 200 GV
View Article and Find Full Text PDF

We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, and 7.0×10^{6} oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation.

View Article and Find Full Text PDF