Publications by authors named "Erol Ercag"

The purpose of this study is to synthesize a highly selective adsorbent to remove cholesterol, one of the most important causes of cardiovascular diseases, from the intestinal mimic solution (IMS). For this purpose, cholesterol imprinted polymers were synthesized by suspension polymerization method using the molecular imprinting technique. In the first step, the functional monomer MATyr with hydrophobic character was synthesized.

View Article and Find Full Text PDF

In this study, a total of 12 coumarin-chalcone derivatives, 6 of which are original were synthesized. The structures of the newly synthesized compounds were elucidated by H NMR, C NMR, IR, and elemental analysis methods (7g-7l). The antioxidant potencies measured by using CUPRAC method (Trolox equivalent total antioxidant capacity) were as follows: 7j > 7i > 7c > 7d > 7k > 7l > 7f > 7h > 7e > 7g > 7a > 7b.

View Article and Find Full Text PDF

This study aimed at synthesizing hydrogels to simulate opaque breast tissue (BT) and coloured cancerous tissues (CT) at different densities of the designed phantom to improve the biopsy-related skills along with ultrasonography. Both tissues are tear-resistant and therefore, the phantom can be trained multiple times in order to lower the price and improve the eye-hand coordination of users. For this purpose, self-healing (SH) polyacrylamide (PAAm) hydrogels (SH hydrogel) obtained by free-radical polymerization of AAm, in the presence of chemical cross-linker, BAAm, physical cross-linker stearyl methacrylate, C18, and ammonium persulfate APS as initiator were used in the design of phantoms.

View Article and Find Full Text PDF

In 2020, the world tried to combat the corona virus (COVID-19) pandemic. A proven treatment method specific to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still not found. In this study, seven new antiviral compounds were designed for COVID-19 treatment.

View Article and Find Full Text PDF

Ammonium dinitramide (ADN) is a strong, environmentally friendly oxidizer used in composite solid rocket propellants. As there is no reliable colorimetric sensor for ADN assay applicable to in-field screening, we developed a sensitive and practical sensing method to determine it in the presence of other explosives and possible interferents, based on the detection of nitrite formed from ADN degradation under UV light in a slightly alkaline (i.e.

View Article and Find Full Text PDF

Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles (Fe O :MNPs) have attracted attention because of their peroxidase-like activity.

View Article and Find Full Text PDF

The novel coronavirus (SARS-CoV-2) causes severe acute respiratory syndrome and can be fatal. In particular, antiviral drugs that are currently available to treat infection in the respiratory tract have been experienced, but there is a need for new antiviral drugs that are targeted and inhibit coronavirus. The antiviral properties of organic compounds found in nature, especially coumarins, are known and widely studied.

View Article and Find Full Text PDF

Due to its relatively simple preparation and readily available precursors, determination of triacetone triperoxide (TATP) by portable devices has become important. In this work, two different titanium dioxide nanoparticles (TiONPs)-based colorimetric sensors based on complex formation on the solid surface were developed for determination of HO and TATP. The first sensor, (3-aminopropyl)triethoxysilane (APTES) modified-TiONPs-based paper sensor (APTES@TiONPs), exploits peroxo-titanate binary complex formation between APTES@TiONPs and HO on chromatographic paper.

View Article and Find Full Text PDF

Detection of explosive residues in soil and postblast debris is an important issue in sensor design for environmental and criminological purposes. An easy-to-use and low-cost gold nanoparticle (AuNP)-based colorimetric sensor was developed for the determination of nitroaromatic explosives, i.e.

View Article and Find Full Text PDF

Cannabis is an important industrial plant, in addition to its illicit drug use. Compound Δ-THC (Δ-tetrahydrocannabinol) is mainly responsible for the hallucinogenic effect on humans. The aminoalkylindole group cannabimimetics targets at the same physiological receptors to mimic the analgesic effects of Δ-THC.

View Article and Find Full Text PDF

Since nitroaromatic- and nitramine-type energetic materials, mostly arising from military activities, are persistent pollutants in soil and groundwater, on-site sensing of these hazardous chemicals has gained importance. A novel electrochemical sensor was designed for detecting nitroaromatic- and nitramine-type energetic materials, relying on gold nanoparticles (Au), modified glassy carbon (GC) electrode coated with nitro-energetic memory-poly(carbazole-aniline) copolymer (Cz- co-ANI) film (e.g.

View Article and Find Full Text PDF

Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis.

View Article and Find Full Text PDF

Pentaerythritol tetranitrate (PETN) is the nitrate ester of pentaerythritol, used as an energetic and filling material for military and civilian purposes and rarely for terrorist actions. As there is no reliable nano-colorimetric method for PETN assay, we developed an indirect method based on the determination of nitrite, obtained by reduction of nitrate derived from the alkaline hydrolysis of PETN with HO. We colorimetrically determined the final product, nitrite, by both conventional Griess reaction and a recently developed gold nanoparticle-4-aminothiophenol-N-(1-naphthyl)-ethylenediamine (AuNP-4-ATP+NED) method.

View Article and Find Full Text PDF

Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure.

View Article and Find Full Text PDF

The explosive triacetone triperoxide (TATP) can be easily manufactured from readily accessible reagents and is extremely difficult to detect, owing to the lack of UV absorbance, fluorescence, or facile ionization. The developed method is based on the acidic hydrolysis of TATP into H2O2, pH adjustment to 3.6, and the addition of magnetite nanoparticles (Fe3O4 MNPs) to the medium to produce hydroxyl radicals from H2O2, owing to the peroxidase-like activity of MNPs.

View Article and Find Full Text PDF

In this work, a novel electrochemical sensor was developed for the detection of nitroaromatic explosive materials, based on a gold nanoparticle-modified glassy carbon (GC) electrode coated with poly(o-phenylenediamine-aniline film) (GC/P(o-PDA-co-ANI)-Aunano electrode). Nitroaromatic compounds were detected through their π-acceptor/donor interactions with o-phenylenediamine-aniline functionalities on the modified electrode surface. The enhanced sensitivities were achieved through π-π and charge-transfer (CT) interactions between the electron-deficient nitroaromatic compounds and σ-/π-donor amine/aniline groups linked to gold nanoparticles (Au-NPs), providing increased binding and preconcentration onto the modified GC-electrodes.

View Article and Find Full Text PDF

The heterocyclic nitramine compounds, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are two most important military-purpose high explosives. Differentiation of RDX and HMX with colorimetric methods of determination has not yet been made because of their similar chemical structures. In this study, a sensitive colorimetric method for the determination of RDX and HMX was proposed on the basis of differential kinetics in the hydrolysis of the two compounds (yielding nitrite as a product) followed by their colorimetric determination using 4-aminothiophenol (4-ATP) modified gold nanoparticles (AuNPs) and naphthylethylene diamine (NED) as coupling agent for azo-dye formation, abbreviated as "4-ATP-AuNP+NED" colorimetric method.

View Article and Find Full Text PDF

Nitro-explosives contain reducible aromatic -NO2 groups or cyclic >N-NO2 bonds that may undergo reductive cleavage. This work reports the development of a cyclic voltammetric (CV) assay for nitro-aromatics (trinitrotoluene (TNT), dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) using a glassy carbon electrode. This determination was first used for these energetic materials by resolving current responses of reduction potentials primarily due to one constituent but partly contributed by other constituents.

View Article and Find Full Text PDF

As there are no molecular spectroscopic determination methods for the most widely used insensitive energetic materials, 2,2',4,4',6,6'-hexanitrostilbene (HNS) and 3-nitro-1,2,4-triazole-5-one (NTO), in the presence of sensitive nitro-explosives, two novel spectrophotometric methods were developed. For HNS and TNT mixtures, both analytes react with dicyclohexylamine (DCHA) forming different colored charge-transfer complexes, which can be resolved by derivative spectroscopy. The spectrophotometric method for NTO measures the 416-nm absorbance of its yellow-colored Na(+)NTO(-) salt formed with NaOH.

View Article and Find Full Text PDF

Rapid and inexpensive sensing of explosive traces in soil and post-blast debris for environmental and criminological purposes with optical sensors has recently gained importance. The developed sensing method for nitro-aromatic and nitramine-based explosives is based on dropping an acetone solution of the analyte to an adsorbent surface, letting the solvent to dry, spraying an analytical reagent to produce a persistent spot, and indirectly measuring its reflectance by means of a miniature spectrometer. This method proved to be useful for on-site determination of nitro-aromatics (trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (tetryl) and dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) pre-adsorbed on a poly vinyl chloride (PVC) surface, with the use of different spray reagents for each group of explosives producing different colors.

View Article and Find Full Text PDF

The two members of peroxide-based explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), can be manufactured from readily accessible reagents, and are difficult to detect by conventional analytical methods. TATP and HMTD were securely synthesized, taken up with acetone, hydrolyzed with 4 M HCl to hydrogen peroxide, the acidic solution containing H(2)O(2) was neutralized, and assayed by the copper(II)-neocuproine spectrophotometric method. The chromophore of the reaction was the Cu(I)-neocuproine chelate responsible for light absorption at 454 nm.

View Article and Find Full Text PDF

Because of the extremely heterogeneous distribution of explosives in contaminated soils, on-site colorimetric methods are efficient tools to assess the nature and extent of contamination. To meet the need for rapid and low-cost chemical sensing of explosive traces or residues in soil and post-blast debris, a colorimetric absorption-based sensor for trinitrotoluene (TNT) determination has been developed. The charge-transfer (CT) reagent (dicyclohexylamine, DCHA) is entrapped in a polyvinylchloride (PVC) polymer matrix plasticised with dioctylphtalate (DOP), and moulded into a transparent sensor membrane sliced into test strips capable of sensing TNT showing an absorption maximum at 530 nm when placed in a 1-mm spectrophotometer cell.

View Article and Find Full Text PDF

The Meisenheimer anions formed from TNT in KOH solutions in alcohol or acetone were used in screening tests for TNT among possible nitro-explosives. The same reaction was used for the spectrophotometric assay of TNT in soil by CRREL (Cold Regions Research & Engineering Laboratory of the U.S.

View Article and Find Full Text PDF

The total antioxidant capacity of the aqueous extracts of some endemic herbs-prepared as infusions by steeping these herbs in hot water--was assayed with bis(neocuproine)copper(II) chloride, also known as the cupric ion reducing antioxidant capacity (CUPRAC) reagent, which was easily accessible, rapid, stable and responsive to both hydrophilic and lipophilic antioxidants. The highest antioxidant capacities of some herbal teas available in the Turkish market were observed for scarlet pimpernel (Anagallis arvensis), sweet basil (Ocimum basilicum), green tea (Camellia sinensis) and lemon balm (Melissa officinalis), in this order (1.63, 1.

View Article and Find Full Text PDF