Publications by authors named "Ernst W Spannhake"

Objective: A radiological emergency such as the detonation of a radiological dispersal device would have catastrophic health, environmental, and economic consequences. Community assessments can provide useful information about radiological and other emergency preparedness at the household level. Tools such as logic models can be applied to link data collected in a community assessment to planned activities and targeted outcomes.

View Article and Find Full Text PDF

Introduction: Community assessments to measure emergency preparedness can inform policies, planning, and communication to the public to improve readiness and response if an emergency was to occur. Public health and emergency management officials need an effective assessment tool to measure community preparedness for a radiological emergency.

Methods: The authors created a survey instrument to collect data on household radiological emergency preparedness that could be implemented using the Community Assessment for Public Health Emergency Response (CASPER) methodology, developed by the U.

View Article and Find Full Text PDF

Objectives: The lack of radiation knowledge among the general public continues to be a challenge for building communities prepared for radiological emergencies. This study applied a multi-criteria decision analysis (MCDA) to the results of an expert survey to identify priority risk reduction messages and challenges to increasing community radiological emergency preparedness.

Methods: Professionals with expertise in radiological emergency preparedness, state/local health and emergency management officials, and journalists/journalism academics were surveyed following a purposive sampling methodology.

View Article and Find Full Text PDF

Objectives: Using data collected from a Community Assessment for Public Health Emergency Response (CASPER) conducted in Fairfax Health District, Virginia, in 2016, we sought to assess the relationship between household-level perceived preparedness and self-reported preparedness behaviors.

Methods: Weighted population estimates and 95% confidence intervals were reported, and Pearson's chi-squared test was used to investigate differences by group.

Results: Examining responses to how prepared respondents felt their household was to handle a large-scale emergency or disaster, an estimated 7.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) is associated with increased cardiac morbidity and mortality with the elderly considered to be the most susceptible. The purpose of this study was to determine if exposure to PM would cause a greater impact on heart regulation in older DBA/2 (D2) male mice as determined by changes in heart rate (HR) and heart rate variability (HRV). D2 mice at the ages of 4, 12, and 19 months were instilled with 100 µg of PM or saline by aspiration.

View Article and Find Full Text PDF

With the goal of reducing rates of surgical site infections in our spine patients, we initiated a trial to investigate the impact of adding perisurgical nasal decolonization involving patients and surgical and nursing staff. We combined immediate presurgical application of a nonantibiotic alcohol-based nasal antiseptic with existing chlorhexidine bath or wipes in a comprehensive pre- and postoperative decolonization protocol. Mean infection rates were significantly decreased by 81% from 1.

View Article and Find Full Text PDF

Background: Antibiotics used to reduce nasal colonization by Staphylococcus aureus in patients before admission are inappropriate for carriage reduction on a regular basis within a hospital community. Effective nonantibiotic alternatives for daily use in the nares will allow reduction of this bacterial source to be addressed.

Methods: Our study tested the effectiveness of a nonantibiotic, alcohol-based antiseptic in reducing nasal bacterial carriage in health care professionals (HCPs) at an urban hospital center.

View Article and Find Full Text PDF

c-Met, the receptor tyrosine kinase whose natural ligand is hepatocyte growth factor, is known to have a key role in cell motility. We have previously shown that lysophosphatidic acid (LPA) induced a decrease in c-Met activation via serine phosphorylation of c-Met at cell-cell contacts. Here, we demonstrate that lipopolysaccharide (LPS) treatment of human bronchial epithelial cells induced internalization of c-Met via phosphorylation at its tyrosine residue 1003.

View Article and Find Full Text PDF

Using exhaled breath condensate (EBC) as a biological media for analysis of biomarkers of exposure may facilitate the understanding of inhalation exposures. In this study, we present method validation for the collection of EBC and analysis of metals in EBC. The collection method was designed for use in a small scale longitudinal study with the goal of improving reproducibility while maintaining economic feasibility.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA), a naturally occurring bioactive lysophospholipid increases the expression of both pro-inflammatory and anti-inflammatory mediators in airway epithelial cells. Soluble ST2 (sST2), an anti-inflammatory mediator, has been known to function as a decoy receptor of interleukin (IL)-33 and attenuates endotoxin-induced inflammatory responses. Here, we show that LPA increased sST2 mRNA expression and protein release in a dose and time dependent manner in human bronchial epithelial cells (HBEpCs).

View Article and Find Full Text PDF

Background: The upper respiratory tract functions to protect lower respiratory structures from chemical and biological agents in inspired air. Cellular oxidative stress leading to acute and chronic inflammation contributes to the resultant pathology in many of these exposures and is typical of allergic disease, chronic sinusitis, pollutant exposure, and bacterial and viral infections. Little is known about the effective means by which topical treatment of the nose can strengthen its antioxidant and anti-inflammatory defenses.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) delta- and zeta-mediated E-cadherin accumulation at cell-cell junctions.

View Article and Find Full Text PDF

LPA (lysophosphatidic acid) is a potent bioactive phospholipid, which regulates a number of diverse cellular responses through G protein-coupled LPA receptors. Intracellular LPA is generated by the phosphorylation of monoacylglycerol by acylglycerol kinase (AGK); however, the role of intracellular LPA in signaling and cellular responses remains to be elucidated. Here, we investigated signaling pathways of IL-8 secretion mediated by AGK and intracellular LPA in human bronchial epithelial cells (HBEpCs).

View Article and Find Full Text PDF

Particulate matter (PM) in ambient air is a risk factor for human respiratory and cardiovascular diseases. The delivery of PM to airway epithelial cells has been linked to release of proinflammatory cytokines; however, the mechanisms of PM-induced inflammatory responses are not well-characterized. This study demonstrates that PM induces cyclooxygenase (COX)-2 expression and IL-6 release through both a reactive oxygen species (ROS)-dependent NF-kappaB pathway and an ROS-independent C/EBPbeta pathway in human bronchial epithelial cells (HBEpCs) in culture.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis with nasal polyps (CRSwNPs) is a disorder characterized by persistent eosinophilic Th2 inflammation and frequent sinonasal microbial colonization. It has been postulated that an abnormal mucosal immune response underlies disease pathogenesis. The relationship between Th2 inflammatory cytokines and the innate immune function of sinonasal epithelial cells (SNECs) has not been explored.

View Article and Find Full Text PDF

We have demonstrated that LPA (lysophosphatidic acid)-induced IL (interleukin)-8 secretion was partly mediated via transactivation of EGFR [EGF (epidermal growth factor) receptor] in HBEpCs (human bronchial epithelial primary cells). The present study provides evidence that LPA-induced transactivation of EGFR regulates COX (cyclo-oxygenase)-2 expression and PGE(2) [PG (prostaglandin) E(2)] release through the transcriptional factor, C/EBPbeta (CCAAT/enhancer-binding protein beta), in HBEpCs. Treatment with LPA (1 microM) stimulated COX-2 mRNA and protein expression and PGE(2) release via G(alphai)-coupled LPARs (LPA receptors).

View Article and Find Full Text PDF

Background: Tobacco use is associated with poorer outcomes of medical and surgical therapy for chronic rhinosinusitis (CRS), although the underlying mechanism is unknown. Acrolein (AC) is a major component of cigarette smoke that has been shown to suppress innate immune gene expression by human bronchial epithelial cells and murine macrophages. In this study, we explore whether exposure of human sinonasal epithelial cells (HSNECs) to AC similarly reduces their innate immune gene expression.

View Article and Find Full Text PDF

Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disorder of the sinonasal mucosa that is frequently associated with microbial colonization. Innate defense mechanisms at the mucosal surface are critical in protecting the host from airborne environmental pathogens. Recent studies of skin and gastrointestinal tract inflammatory diseases have shown that stimulation of the interleukin-22 receptor (IL-22R1) nonspecifically increases innate immune responses.

View Article and Find Full Text PDF

Previously we demonstrated that ligation of lysophosphatidic acid (LPA) to G protein-coupled LPA receptors induces transactivation of receptor tyrosine kinases (RTKs), such as platelet-derived growth factor receptor beta (PDGF-Rbeta) and epidermal growth factor receptor (EGF-R), in primary cultures of human bronchial epithelial cells (HBEpCs). Here we examined the role of LPA on c-Met redistribution and modulation of hepatocyte growth factor (HGF)/c-Met pathways in HBEpCs. Treatment of HBEpCs with LPA-induced c-Met serine phosphorylation and redistribution to plasma membrane, while treatment with HGF-induced c-Met internalization.

View Article and Find Full Text PDF

Interleukin-13 (IL-13), a Th2 cytokine, plays a pivotal role in pathogenesis of bronchial asthma via IL-13 receptor alpha1 (IL-13Ralpha1) and IL-4 receptor alpha (IL-4Ralpha). Recent studies show that a decoy receptor for IL-13, namely IL-13Ralpha2, mitigates IL-13 signaling and function. This study provides evidence for regulation of IL-13Ralpha2 production and release and IL-13-dependent signaling by lysophosphatidic acid (LPA) in primary cultures of human bronchial epithelial cells (HBEpCs).

View Article and Find Full Text PDF

Background: Innate immune recognition of pathogens by sinonasal epithelial cells may play an important role in the pathogenesis of chronic rhinosinusitis (CRS). Previous studies have indicated that toll-like receptor (TLR) mRNA is present in sinonasal mucosa, and levels of TLR9 expression are decreased in recalcitrant CRS with nasal polyps (CRSwNP). However, the cellular source and function of TLR9 in the sinonasal epithelium is not known.

View Article and Find Full Text PDF

We have demonstrated earlier that lysophosphatidic acid (LPA)-induced interleukin-8 (IL-8) secretion is regulated by protein kinase Cdelta (PKCdelta)-dependent NF-kappaB activation in human bronchial epithelial cells (HBEpCs). Here we provide evidence for signaling pathways that regulate LPA-mediated transactivation of epidermal growth factor receptor (EGFR) and the role of cross-talk between G-protein-coupled receptors and receptor-tyrosine kinases in IL-8 secretion in HBEpCs. Treatment of HBEpCs with LPA stimulated tyrosine phosphorylation of EGFR, which was attenuated by matrix metalloproteinase (MMP) inhibitor (GM6001), heparin binding (HB)-EGF inhibitor (CRM 197), and HB-EGF neutralizing antibody.

View Article and Find Full Text PDF

Airway epithelium is emerging as a regulator of local inflammation and immune responses. However, the cellular and molecular mechanisms responsible for the immune modulation by these cells have yet to be fully elucidated. At the cellular level, the hallmarks of airway inflammation are mucus gland hypertrophy with excess mucus production, accumulation of inflammatory mediators, inflammation in the airway walls and lumen, and breakdown and turnover of the extracellular matrix.

View Article and Find Full Text PDF

HBEpCs (human bronchial epithelial cells) contribute to airway inflammation by secreting a variety of cytokines and chemokines in response to allergens, pathogens, viruses and environmental toxins and pollutants. The potent neutrophil chemoattractant, IL-8 (interleukin-8), is a major cytokine secreted by HBEpCs. We have recently demonstrated that LPA (lysophosphatidic acid) stimulated IL-8 production in HBEpCs via protein kinase C delta dependent signal transduction.

View Article and Find Full Text PDF

Human monocytic THP-1 cells can be induced to differentiate to macrophages when treated with phorbol 12-myristate 13-acetate (PMA). It is understood that before initiating cell differentiation, PMA treatment must first induce an inhibition of cell growth. Since the initial biochemical and molecular events that are associated with this growth inhibition have not been characterized, the present study was carried out to elucidate the molecular mechanisms associated with the PMA-induced growth arrest of THP-1 cells.

View Article and Find Full Text PDF