Minim Invasive Ther Allied Technol
January 2022
Introduction: An ultra-thin, fracture-resistant and bioresorbable stent may be advantageous for provisional stenting in vessel bifurcations, if catheter passage and side-branch post-dilatation is facilitated to prevent a 'stent jail' by struts obstructing the orifice of a major side branch.
Material And Methods: We studied a highly radiopaque, slowly bioresorbable zinc alloy stent characterized by a novel design of a radiopaque-marked region of ultra-thin struts in the center of the stent. The stent is characterized by an extended range flexibility and high fracture resistance.
Metallic Zn alloys have recently gained interest as potential candidates for developing platforms of bioresorbable vascular stents (BVS). Previous studies revealed that Mg alloys used for BVS can degrade too early, whereas PLLA materials may fail to provide effective scaffolding properties. Here we report on results of a new bioresorbable, metallic stent made from a Zn-Ag alloy studied in a porcine animal model of thrombosis and restenosis.
View Article and Find Full Text PDFClin Hemorheol Microcirc
June 2016
Biomaterials made of zinc have been widely described to be antioxidative, hypothrombogenic, antiinflammatory and antiproliferative. Additionally in vivo zinc is toxic only in high concentrations and can completely be metabolized in vivo. Due to these properties zinc based vascular stents might be able to reduce the rate of restenosis in comparison to bare metal stents and zinc stents might be also able to limit the foreign body reaction.
View Article and Find Full Text PDFHemispheric lateralization is a frequently encountered phenomenon of cortical function. It describes the functional specialization of a region on one side of the brain for a given task. It is well characterized in motor and sensory, as well as language systems and becomes more and more known for various cognitive domains.
View Article and Find Full Text PDFRationale And Objectives: The aim of this study was to assess the intrasubject and intersubject reproducibility of functional magnetic resonance imaging (fMRI) language paradigms on language localization and lateralization.
Materials And Methods: Fourteen healthy volunteers were enrolled prospectively and underwent language fMRI using visually triggered covert and overt sentence generation (SG) and word generation (WG) paradigms. Semiautomated analysis of all functional data was performed using Brain Voyager on an individual basis.
Purpose: To establish a passive motor paradigm for clinical functional MRI (fMRI) that could be beneficial for patients with motor or attention deficits who are not able to perform active motor tasks.
Materials And Methods: A novel standardized sensorimotor fMRI protocol was applied in 16 healthy volunteers at 3 Tesla (T) using active and passive motor tasks as well as sensory stimulation of hands and feet. Data analysis was carried out individually using a dynamic thresholding routine.
Trigeminal neuralgia (TN) is a pain state characterized by intermittent unilateral pain attacks in one or several facial areas innervated by the trigeminal nerve. The somatosensory cortex is heavily involved in the perception of sensory features of pain, but it is also the primary target for thalamic input of nonpainful somatosensory information. Thus, pain and somatosensory processing are accomplished in overlapping cortical structures raising the question whether pain states are associated with alteration of somatosensory function itself.
View Article and Find Full Text PDFIn the context of the present study spatial perspective taking refers to the ability to translocate one's own egocentric viewpoint to somebody else's viewpoint in space. We adopted a spatial perspective taking paradigm and performed a functional magnetic resonance imaging study to assess gender differences of neural activity during perspective taking. 24 healthy subjects (12 male/12 female) were asked to systematically either take their own (first-person-perspective, 1PP) or another person's perspective (third-person-perspective, 3PP).
View Article and Find Full Text PDFUnilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts.
View Article and Find Full Text PDFPurpose: To prospectively assess the feasibility of standardized presurgical functional magnetic resonance (MR) imaging for localizing the Broca and Wernicke areas and for lateralizing language function.
Materials And Methods: The study was approved by the responsible ethics commission, and patients gave written informed consent. Eighty-one patients (36 female and 45 male patients; age range, 7-75 years) with different brain tumors underwent blood oxygen level-dependent functional MR imaging at 1.
Objective: Most so-called idiopathic trigeminal neuralgias (TN) are caused by neurovascular compression. Does the size of the cerebellopontine cistern play a role in favoring a neurovascular conflict? The aim of this prospective study was to measure the volume of the parapontine cistern in patients with idiopathic TN and to perform a comparison with healthy controls.
Methods: In 25 patients with unilateral idiopathic TN and 17 healthy participants, high-resolution 1.
Standardized, robust and time-efficient localization of the human secondary somatosensory cortex (S2) is a challenge in clinical blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). A fully automated tactile stimulation was optimized in seven right-handed volunteers at 1.5 T for minimum scan time, high BOLD signals and robust localization of S2 by systematically varying the applied block-design.
View Article and Find Full Text PDFA clinical functional magnetic resonance imaging (fMRI) protocol based on a fully automated tactile stimulation was optimized in 10 right-handed volunteers at 1.5 T for minimum scan time, high BOLD-signals and robust localization of the primary somatosensory cortex (S1) by systematically varying the applied block design. All volunteers had six different fMRI measurements of 5 stimulation/baseline cycles each with equal block duration that was changed between the measurements from 6 to 30 s.
View Article and Find Full Text PDF