Publications by authors named "Ernst Dieter Gilles"

Summary: The modeling tool PROMOT facilitates the efficient and comprehensible setup and editing of modular models coupled with customizable visual representations. Since its last major publication in 2003, PROMOT has gained new functionality in particular support of logical models, efficient editing, visual exploration, model validation and support for SBML.

Availability: PROMOT is an open source project and freely available at http://www.

View Article and Find Full Text PDF

Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity.

View Article and Find Full Text PDF

Motivation: The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.

View Article and Find Full Text PDF

Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions.

View Article and Find Full Text PDF

Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation.

View Article and Find Full Text PDF

Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes.

View Article and Find Full Text PDF

Background: The hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development of invasive and metastatic phenotypes. The human microbial pathogen Helicobacter pylori can induce chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations.

View Article and Find Full Text PDF

Background: Global control influences the regulation of many individual subsystems by superimposed regulator proteins. A prominent example is the control of carbohydrate uptake systems by the transcription factor Crp in Escherichia coli. A detailed understanding of the coordination of the control of individual transporters offers possibilities to explore the potential of microorganisms e.

View Article and Find Full Text PDF

In Escherichia coli K-12, components of the phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) represent a signal transduction system involved in the global control of carbon catabolism through inducer exclusion mediated by phosphoenolpyruvate-dependent protein kinase enzyme IIA(Crr) (EIIA(Crr)) (= EIIA(Glc)) and catabolite repression mediated by the global regulator cyclic AMP (cAMP)-cAMP receptor protein (CRP). We measured in a systematic way the relation between cellular growth rates and the key parameters of catabolite repression, i.e.

View Article and Find Full Text PDF

The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken.

View Article and Find Full Text PDF

Background: The analysis of biochemical networks using a logical (Boolean) description is an important approach in Systems Biology. Recently, new methods have been proposed to analyze large signaling and regulatory networks using this formalism. Even though there is a large number of tools to set up models describing biological networks using a biochemical (kinetic) formalism, however, they do not support logical models.

View Article and Find Full Text PDF

A dynamic mathematical model was developed to describe the uptake of various carbohydrates (glucose, lactose, glycerol, sucrose, and galactose) in Escherichia coli. For validation a number of isogenic strains with defined mutations were used. By considering metabolic reactions as well as signal transduction processes influencing the relevant pathways, we were able to describe quantitatively the phenomenon of catabolite repression in E.

View Article and Find Full Text PDF

By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again.

View Article and Find Full Text PDF

Cellular regulation comprises overwhelmingly complex interactions between genes and proteins that ultimately will only be rendered understandable by employing formal approaches. Developing large-scale mathematical models of such systems in an efficient and reliable way, however, requires careful evaluation of structuring principles for the models, of the description of the system dynamics, and of the experimental data basis for adjusting the models to reality. We discuss these three aspects of model development using the example of cell cycle regulation in yeast and suggest that capturing complex dynamic networks is feasible despite incomplete (quantitative) biological knowledge.

View Article and Find Full Text PDF

Robustness, a relative insensitivity to perturbations, is a key characteristic of living cells. However, the specific structural characteristics that are responsible for robust performance are not clear, even in genetic circuits of moderate complexity. Formal sensitivity analysis allows the investigation of robustness and fragility properties of mathematical models representing regulatory networks, but it yields only local properties with respect to a particular choice of parameter values.

View Article and Find Full Text PDF

Motivation: Structural studies of metabolic networks yield deeper insight into topology, functionality and capabilities of the metabolisms of different organisms. Here, we address the analysis of potential failure modes in metabolic networks whose occurrence will render the network structurally incapable of performing certain functions. Such studies will help to identify crucial parts in the network structure and to find suitable targets for repressing undesired metabolic functions.

View Article and Find Full Text PDF

The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose.

View Article and Find Full Text PDF

Prokaryotic taxis, the active search of motile cells for the best environmental conditions, is one of the paradigms for signal transduction. The search algorithm implemented by the cellular biochemistry modulates the probability of switching the rotational direction of the flagellar motor, a nanomachine that propels prokaryotic cells. On the basis of the well-known biochemical mechanisms of chemotaxis in Escherichia coli, kinetic modeling of the events leading from chemoreceptor activation by ligand binding to the motility response has been performed with great success.

View Article and Find Full Text PDF

Motivation: The analysis of structure, pathways and flux distributions in metabolic networks has become an important approach for understanding the functionality of metabolic systems. The need of a user-friendly platform for stoichiometric modeling of metabolic networks in silico is evident.

Results: The FluxAnalyzer is a package for MATLAB and facilitates integrated pathway and flux analysis for metabolic networks within a graphical user interface.

View Article and Find Full Text PDF

The relationship between structure, function and regulation in complex cellular networks is a still largely open question. Systems biology aims to explain this relationship by combining experimental and theoretical approaches. Current theories have various strengths and shortcomings in providing an integrated, predictive description of cellular networks.

View Article and Find Full Text PDF

We present a computational model that offers an integrated quantitative, dynamic, and topological representation of intracellular signal networks, based on known components of epidermal growth factor (EGF) receptor signal pathways. The model provides insight into signal-response relationships between the binding of EGF to its receptor at the cell surface and the activation of downstream proteins in the signaling cascade. It shows that EGF-induced responses are remarkably stable over a 100-fold range of ligand concentration and that the critical parameter in determining signal efficacy is the initial velocity of receptor activation.

View Article and Find Full Text PDF

Metabolite balancing has turned out to be a powerful computational tool in metabolic engineering. However, the linear equation systems occurring in this analysis are often underdetermined. If it is difficult or impossible to find the missing constraints, it is nevertheless feasible in some cases to determine the values of a subset of the unknown rates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsbpfbgcktb52cuf6k7daq8e7v2q0v4dg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once