Publications by authors named "Ernst Dalhoff"

The slowing and reduction of auditory responses in the brain are recognized side effects of increased pure tone thresholds, impaired speech recognition, and aging. However, it remains controversial whether central slowing is primarily linked to brain processes as atrophy, or is also associated with the slowing of temporal neural processing from the periphery. Here we analyzed electroencephalogram (EEG) responses that most likely reflect medial geniculate body (MGB) responses to passive listening of phonemes in 80 subjects ranging in age from 18 to 76 years, in whom the peripheral auditory responses had been analyzed in detail (Schirmer et al.

View Article and Find Full Text PDF

Background: To date, there is no consensus on how to standardize the assessment of ototoxicity in serial measurements. For the diagnosis of damage to the cochlear amplifier, measurement methods are required that have the highest possible test-retest reliability and validity for detecting persistent damage. Estimated distortion-product thresholds (L) based on short-pulse distortion-product otoacoustic emission (DPOAE) level maps use individually optimal DPOAE stimulus levels and allow reliable quantitative estimation of cochlea-related hearing loss.

View Article and Find Full Text PDF

Objectives: To date, there is no international standard on how to use distortion-product otoacoustic emissions (DPOAEs) in serial measurements to accurately detect changes in the function of the cochlear amplifier due, for example, to ototoxic therapies, occupational noise, or the development of regenerative therapies. The use of clinically established standard DPOAE protocols for serial monitoring programs appears to be hampered by multiple factors, including probe placement and calibration effects, signal-processing complexities associated with multiple sites of emission generation as well as suboptimal selection of stimulus parameters.

Design: Pulsed DPOAEs were measured seven times within 3 months for f2 = 1 to 14 kHz and L2 = 25 to 80 dB SPL in 20 ears of 10 healthy participants with normal hearing (mean age = 32.

View Article and Find Full Text PDF

Background: To date, there is no consensus on how to standardize the assessment of ototoxicity in serial measurements. For the diagnosis of damage to the cochlear amplifier, measurement methods are required that have the highest possible test-retest reliability and validity for detecting persistent damage. Estimated distortion-product thresholds (L) based on short-pulse distortion-product otoacoustic emission (DPOAE) level maps use individually optimal DPOAE stimulus levels and allow reliable quantitative estimation of cochlea-related hearing loss.

View Article and Find Full Text PDF

: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. : We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. : A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking.

View Article and Find Full Text PDF

The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef).

View Article and Find Full Text PDF

When referred to baseline measures, serial monitoring of pure-tone behavioral thresholds and distortion-product otoacoustic emissions (DPOAEs) can be used to detect the progression of cochlear damage. Semi-logarithmic DPOAE input-output (I/O) functions enable the computation of estimated distortion-product thresholds (EDPTs) by means of linear regression, a metric that provides a quantitative estimate of hearing loss due to cochlear-amplifier degradation. DPOAE wave interference and a suboptimal choice of stimulus levels limit the accuracy of EDPTs.

View Article and Find Full Text PDF

Distortion-product otoacoustic emissions (DPOAEs) emerge from the cochlea when elicited with two tones of frequencies f and f. DPOAEs mainly consist of two components, a nonlinear-distortion and a coherent-reflection component. Input-output (I/O) functions of DPOAE pressure at the cubic difference frequency, f=2f-f, enable the computation of estimated distortion-product thresholds (EDPTs), offering a noninvasive approach to estimate auditory thresholds.

View Article and Find Full Text PDF

The amplitudes of distortion-product otoacoustic emissions (DPOAEs) may abruptly decrease even though the stimulus level is relatively high. These notches observed in the DPOAE input/output functions or distortion-product grams have been hypothesized to be due to destructive interference between wavelets generated by distributed sources of the nonlinear-distortion component of DPOAEs. In this paper, simulations with a smooth cochlear model and its analytical solution support the hypothesis that destructive interference between individual wavelets may lead to the amplitude notches and explain the cause for onset and offset amplitude overshoots in the DPOAE signal measured for intensity pairs in the notches.

View Article and Find Full Text PDF

Distortion product otoacoustic emissions (DPOAEs) are evoked by two stimulus tones with frequency f and f of ratio f/f  in the range between approximately 1.05 and 1.4.

View Article and Find Full Text PDF

Today's audiometric methods for the diagnosis of middle ear disease are often based on a comparison of measurements with standard curves, that represent the statistical range of normal hearing responses. Because of large inter-individual variances in the middle ear, especially in wideband tympanometry (WBT), specificity and quantitative evaluation are greatly restricted. A new model-based approach could transform today's predominantly qualitative hearing diagnostics into a quantitative and tailored, patient-specific diagnosis, by evaluating WBT measurements with the aid of a middle-ear model.

View Article and Find Full Text PDF

Distortion-product otoacoustic emissions (DPOAEs) are presumed to consist mainly of two components, a nonlinear-distortion component and a coherent-reflection component. Wave interference between these two components reduces the accuracy of DPOAEs when used to evaluate cochlear function. Here, short tone pulses are utilized to record DPOAE signals in normal-hearing subjects.

View Article and Find Full Text PDF

Distortion-product otoacoustic emissions (DPOAEs) arise in the cochlea in response to two tones with frequencies f and f and mainly consist of two components, a nonlinear-distortion and a coherent-reflection component. Wave interference between these components limits the accuracy of DPOAEs when evaluating the function of the cochlea with conventional continuous stimulus tones. Here, DPOAE components are separated in the time domain from DPOAE signals elicited with short stimulus pulses.

View Article and Find Full Text PDF

The active middle-ear implant Vibrant Soundbridge (VSB) is used to treat mild-to-severe sensorineural hearing losses. The standard surgical approach for incus vibroplasty is a mastoidectomy and a posterior tympanotomy, crimping the Floating Mass Transducer (FMT) to the long process of the incus (LPI) (standard crimped application). However, tight crimping increases the risk of necrosis of the LPI, resulting in reduction of energy transfer and loss of amplification.

View Article and Find Full Text PDF

Distortion-product otoacoustic emissions (DPOAEs) emerge when presenting two primary tones with different frequencies f1 and f2 to the cochlea and are commonly used in diagnosis and research to evaluate the functional state of the cochlea. Optimal primary-tone stimulus levels accounting for the different level dependencies of the traveling-wave amplitudes of the two primary tones near the f2-tonotopic place on the basilar membrane are often used to maximize DPOAE amplitudes. However, parameters defining the optimal levels can be affected by wave interference between the nonlinear-distortion and coherent-reflection components of the DPOAE.

View Article and Find Full Text PDF

Introduction: Active middle-ear implants with floating-mass transducer (FMT) technology are used to treat mild-to-severe sensorineural hearing losses. The standard surgical approach for incus vibroplasty is a mastoidectomy and a posterior tympanotomy, crimping the FMT to the long incus process. An alternative fixation side with less surgical trauma might be the short incus process and incus body.

View Article and Find Full Text PDF

Hypothesis: In situ evaluation of the vibration performance of a hybrid system for intracochlear fluid stimulation, constructed from a floating mass transducer (FMT) coupled to an electric acoustic stimulation (EAS) cochlea implant (CI) electrode.

Background: EAS uses both CI technology to restore severe-to-profound hearing loss at high frequencies and acoustic amplification for mild-to-moderate hearing loss in the low-to-mid frequency range. More patients with residual hearing are becoming candidates for EAS surgery because of the improved techniques for hearing preservation.

View Article and Find Full Text PDF

Objectives: The active middle ear implant Vibrant Soundbridge® was originally designed to treat mild-to-severe sensorineural hearing losses. The floating mass transducer (FMT) is crimped onto the long incus process. The procedure is termed incus vibroplasty to distinguish from other attachment sites or stimulus modi for treating conductive and mixed hearing losses.

View Article and Find Full Text PDF

Introduction: Since 1996, the preferred approach for positioning the active middle-ear implant Vibrant Soundbridge© is a mastoidectomy and a posterior tympanotomy. With this device, placement of the floating mass transducer (FMT) on the long incus process is the standard method for treatment of mild-to-severe sensorineural hearing loss in the case of normal middle-ear anatomy. The aim of this study was to determine the vibrational effectiveness of FMT placement at the short incus process.

View Article and Find Full Text PDF

Distortion product otoacoustic emissions (DPOAEs) acquired in normal-hearing subjects show considerable variation in amplitude with varying frequency. This is known as DPOAE fine structure. It is widely accepted that fine structure results from wave interference from two DPOAE sources, a non-linear generation component and a coherent reflection component.

View Article and Find Full Text PDF

Fine structure in the frequency response of distortion product otoacoustic emissions (DPOAEs) can severely limit the usefulness of DPOAEs in estimating auditory thresholds. Here, fine structure is removed by extracting the primary-source DPOAE component using the onset-decomposition technique (Vetešník et al., 2009) and auditory threshold estimates are compared to those obtained from DPOAEs in response to conventional, continuous two-tone stimulation.

View Article and Find Full Text PDF

A concept for a partially implantable hearing device, for which the power supply and signal transmission are provided by an optical transmission path, is evaluated. The actuator is designed to fit into the round-window niche and to couple directly to the round-window membrane. Implantable hearing aids can be a suitable solution in the case of severe hearing loss, where conventional hearing aids often fail.

View Article and Find Full Text PDF

Round-window stimulation is a new clinical approach for the application of active middle-ear implants. To investigate factors influencing the efficiency of round-window stimulation, experiments in 6 human temporal bones were performed with different actuator geometries and coupling conditions. The experiments show that the amplitude ratio between stapes and round-window actuator vibration is most efficient when using a 1.

View Article and Find Full Text PDF

In this paper, an analytical model of the tympanic membrane is introduced where the two-dimensional tympanic membrane is reduced to a one-dimensional string. It is intended to bridge the gap between lumped-element models and finite-element models. In contrast to known lumped-element models, the model takes the distributed effect of the sound field on the tympanic membrane into account.

View Article and Find Full Text PDF