Publications by authors named "Ernst D Gilles"

During liver regeneration, quiescent hepatocytes re-enter the cell cycle to proliferate and compensate for lost tissue. Multiple signals including hepatocyte growth factor, epidermal growth factor, tumor necrosis factor α, interleukin-6, insulin and transforming growth factor β orchestrate these responses and are integrated during the G(1) phase of the cell cycle. To investigate how these inputs influence DNA synthesis as a measure for proliferation, we established a large-scale integrated logical model connecting multiple signaling pathways and the cell cycle.

View Article and Find Full Text PDF

Summary: The modeling tool PROMOT facilitates the efficient and comprehensible setup and editing of modular models coupled with customizable visual representations. Since its last major publication in 2003, PROMOT has gained new functionality in particular support of logical models, efficient editing, visual exploration, model validation and support for SBML.

Availability: PROMOT is an open source project and freely available at http://www.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity.

View Article and Find Full Text PDF

Background: Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable.

View Article and Find Full Text PDF

Motivation: The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.

View Article and Find Full Text PDF

Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation.

View Article and Find Full Text PDF

Engagement of the TCR can induce different functional outcomes such as activation, proliferation, survival, or apoptosis. How the TCR-mediated signaling cascades generating these distinct cellular responses are organized on the molecular level is so far not completely understood. To obtain insight into this question, we analyzed TCR/CD8-mediated signaling events in mature OT-I TCR transgenic T cells under conditions of stimulation that lead to either proliferation or apoptosis.

View Article and Find Full Text PDF

Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations.

View Article and Find Full Text PDF

Background: Global control influences the regulation of many individual subsystems by superimposed regulator proteins. A prominent example is the control of carbohydrate uptake systems by the transcription factor Crp in Escherichia coli. A detailed understanding of the coordination of the control of individual transporters offers possibilities to explore the potential of microorganisms e.

View Article and Find Full Text PDF

Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest.

View Article and Find Full Text PDF

Background: Mathematical modelling of cellular networks is an integral part of Systems Biology and requires appropriate software tools. An important class of methods in Systems Biology deals with structural or topological (parameter-free) analysis of cellular networks. So far, software tools providing such methods for both mass-flow (metabolic) as well as signal-flow (signalling and regulatory) networks are lacking.

View Article and Find Full Text PDF

The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken.

View Article and Find Full Text PDF

Background: The analysis of biochemical networks using a logical (Boolean) description is an important approach in Systems Biology. Recently, new methods have been proposed to analyze large signaling and regulatory networks using this formalism. Even though there is a large number of tools to set up models describing biological networks using a biochemical (kinetic) formalism, however, they do not support logical models.

View Article and Find Full Text PDF

The Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis.

View Article and Find Full Text PDF

Background: Structural analysis of cellular interaction networks contributes to a deeper understanding of network-wide interdependencies, causal relationships, and basic functional capabilities. While the structural analysis of metabolic networks is a well-established field, similar methodologies have been scarcely developed and applied to signaling and regulatory networks.

Results: We propose formalisms and methods, relying on adapted and partially newly introduced approaches, which facilitate a structural analysis of signaling and regulatory networks with focus on functional aspects.

View Article and Find Full Text PDF

Background: Receptors and scaffold proteins possess a number of distinct domains and bind multiple partners. A common problem in modeling signaling systems arises from a combinatorial explosion of different states generated by feasible molecular species. The number of possible species grows exponentially with the number of different docking sites and can easily reach several millions.

View Article and Find Full Text PDF

By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again.

View Article and Find Full Text PDF

The presumably high potential of a holistic design approach for complex biochemical reaction networks is exemplified here for the network of tryptophan biosynthesis from glucose, a system whose components have been investigated thoroughly before. A dynamic model that combines the behavior of the trp operon gene expression with the metabolic network of central carbon metabolism and tryptophan biosynthesis is investigated. This model is analyzed in terms of metabolic fluxes, metabolic control, and nonlinear optimization.

View Article and Find Full Text PDF

Cellular regulation comprises overwhelmingly complex interactions between genes and proteins that ultimately will only be rendered understandable by employing formal approaches. Developing large-scale mathematical models of such systems in an efficient and reliable way, however, requires careful evaluation of structuring principles for the models, of the description of the system dynamics, and of the experimental data basis for adjusting the models to reality. We discuss these three aspects of model development using the example of cell cycle regulation in yeast and suggest that capturing complex dynamic networks is feasible despite incomplete (quantitative) biological knowledge.

View Article and Find Full Text PDF

A benchmark problem is described for the reconstruction and analysis of biochemical networks given sampled experimental data. The growth of the organisms is described in a bioreactor in which one substrate is fed into the reactor with a given feed rate and feed concentration. Measurements for some intracellular components are provided representing a small biochemical network.

View Article and Find Full Text PDF

Robustness, a relative insensitivity to perturbations, is a key characteristic of living cells. However, the specific structural characteristics that are responsible for robust performance are not clear, even in genetic circuits of moderate complexity. Formal sensitivity analysis allows the investigation of robustness and fragility properties of mathematical models representing regulatory networks, but it yields only local properties with respect to a particular choice of parameter values.

View Article and Find Full Text PDF

Apoptosis is an important physiological process crucially involved in development and homeostasis of multicellular organisms. Although the major signaling pathways have been unraveled, a detailed mechanistic understanding of the complex underlying network remains elusive. We have translated here the current knowledge of the molecular mechanisms of the death-receptor-activated caspase cascade into a mathematical model.

View Article and Find Full Text PDF

Motivation: Structural studies of metabolic networks yield deeper insight into topology, functionality and capabilities of the metabolisms of different organisms. Here, we address the analysis of potential failure modes in metabolic networks whose occurrence will render the network structurally incapable of performing certain functions. Such studies will help to identify crucial parts in the network structure and to find suitable targets for repressing undesired metabolic functions.

View Article and Find Full Text PDF

Prokaryotic taxis, the active search of motile cells for the best environmental conditions, is one of the paradigms for signal transduction. The search algorithm implemented by the cellular biochemistry modulates the probability of switching the rotational direction of the flagellar motor, a nanomachine that propels prokaryotic cells. On the basis of the well-known biochemical mechanisms of chemotaxis in Escherichia coli, kinetic modeling of the events leading from chemoreceptor activation by ligand binding to the motility response has been performed with great success.

View Article and Find Full Text PDF