Background: Safe implementation and translation of FLASH radiotherapy to the clinic requirehs development of beam monitoring devices capable of high temporal resolution with wide dynamic ranges. Ideal detectors should be able to monitor LINAC pulses, withstand high doses and dose rates, and provide information about the beam output, energy/range, and profile.
Purpose: Two novel detectors have been designed and tested for ultra-high dose-rate (UHDR) monitoring: a multilayer nano-structured 3-layer high-energy-current (HEC3) detector, and a segmented large area, 4-section flat (S4) detector with the goal of exploring their properties for a future combined design.
Background: The use of electron beams has been rekindled by the advent of ultra-high-dose rate radiotherapy (FLASH) and very high energy electrons (VHEE). The need for development of novel technology for beam monitoring and dosimetry of such beams is of paramount importance prior to their clinical translation.
Purpose: In this work we explore the potential of a multi-layer nanoporous aerogel High-Energy-Current (HEC) detector as a dosimeter for electron beam.
Purpose: We investigated the characteristics of radiation-induced current in nano-porous pellet and thin-film anodized tantalum exposed to kVp X-ray beams. We aim at developing a large area (≫cm) thin-film radiation sensor for medical, national security and space applications.
Methods: Large area (few cm) micro-thin Ta foils were anodized and coated with a counter electrode made of conductive polymer.
Globally, cervical cancer is the fourth leading cancer among women and is dominant in resource-poor settings in its occurrence and mortality. This study focuses on developing liquid immunogenic fiducial eluter (LIFE) Biomaterial with components that include biodegradable polymers, nanoparticles, and an immunoadjuvant. LIFE Biomaterial is designed to provide image guidance during radiotherapy similar to clinically used liquid fiducials while enhancing therapeutic efficacy for advanced cervical cancer.
View Article and Find Full Text PDFBiomed Phys Eng Express
February 2024
In this feasibility study, we explore an application of a Resistive Electrode Array (REA) for localization of a radioactive point source. The inverse problem posed by multichannel REA detection is studied from mathematical perspective and involves the questions of the minimal configuration of the conductive leads that can achieve this goal. The basic configuration consists of a circularly shaped REA with four opposite electrical lead-pairs at its perimeter.
View Article and Find Full Text PDFThe use of an immunogenic smart radiotherapy biomaterial (iSRB) for the delivery of anti-CD40 is effective in treating different cancers in animal models. This study further characterizes the use of iSRBs to evaluate any associated toxicity in healthy C57BL6 mice. iSRBs were fabricated using a poly-lactic-co-glycolic-acid (PLGA) polymer mixed with titanium dioxide (TiO) nanoparticles incorporated into its matrix.
View Article and Find Full Text PDFStudies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy).
View Article and Find Full Text PDFRecent studies have highlighted the potential of smart radiotherapy biomaterials (SRBs) for combining radiotherapy and immunotherapy. These SRBs include smart fiducial markers and smart nanoparticles made with high atomic number materials that can provide requisite image contrast during radiotherapy, increase tumor immunogenicity, and provide sustained local delivery of immunotherapy. Here, we review the state-of-the-art in this area of research, the challenges and opportunities, with a focus on in situ vaccination to expand the role of radiotherapy in the treatment of both local and metastatic disease.
View Article and Find Full Text PDFPurpose: Determine the dosimetric quality and the planning time reduction when utilizing a template-based automated planning application.
Methods: A software application integrated through the treatment planning system application programing interface, QuickPlan, was developed to facilitate automated planning using configurable templates for contouring, knowledge-based planning structure matching, field design, and algorithm settings. Validations are performed at various levels of the planning procedure and assist in the evaluation of readiness of the CT image, structure set, and plan layout for automated planning.
Background: Paramagnetic species such as O and free radicals can enhance T and T relaxation times. If the change in relaxation time is sufficiently large, the contrast will be generated in magnetic resonance images. Since radiation is known to be capable of altering the concentration of O and free radicals during water radiolysis, it may be possible for radiation to induce MR signal change.
View Article and Find Full Text PDFWe have developed a new type of detector array for monitoring of radiation beams in radiotherapy. The detector has parallel-plane architecture with multiple large-area uniform thin-film electrodes. At least one of the electrodes is resistive and has multiple signal readouts spread out along its perimeter.
View Article and Find Full Text PDFThe purpose of the present work is to evaluate the feasibility of a novel real-time beam monitoring device for medical linacs which remotely senses charge carriers produced in air by the beam without intersecting and attenuating the beamline. The primary goal is to elaborate a theoretical concept of a possible detector geometry and underlying physical model that allows for determination of clinically relevant beam data in real time, namely MLC leaf positions and dose rate. The detector consists of two opposing electrode arrays arranged in two possible orientations around the beamline.
View Article and Find Full Text PDFAmong a growing body of literature in global oncology, several articles project increased cost savings and radiotherapy access by adopting hypofractionated radiotherapy (HFRT) in low- and middle-income countries (LMICs) like those in Africa. Clinical trials in Europe and the USA have demonstrated HFRT to be non-inferior to conventional radiotherapy for eligible patients with several cancers, including prostate cancer. This could be a highly recommended option to battle a severely large and growing cancer burden in resource-limited regions.
View Article and Find Full Text PDFPurpose: Widespread implementation of automated treatment planning in radiation therapy remains elusive owing to variability in clinic and physician preferences, making it difficult to ensure consistent plan parameters. We have developed an open-source class library with the aim to improve efficiency and consistency for automated treatment planning in radiation therapy.
Methods And Materials: An open-source class library has been developed that interprets clinical templates within a commercial treatment planning system into a treatment plan for automated planning.
Purpose: Linear accelerator quality assurance (QA) in radiation therapy is a time consuming but fundamental part of ensuring the performance characteristics of radiation delivering machines. The goal of this work is to develop an automated and standardized QA plan generation and analysis system in the Oncology Information System (OIS) to streamline the QA process.
Methods: Automating the QA process includes two software components: the AutoQA Builder to generate daily, monthly, quarterly, and miscellaneous periodic linear accelerator QA plans within the Treatment Planning System (TPS) and the AutoQA Analysis to analyze images collected on the Electronic Portal Imaging Device (EPID) allowing for a rapid analysis of the acquired QA images.
In the advent of the coronavirus disease (COVID-19) pandemic, professional societies including the American Society for Radiation Oncology and the National Comprehensive Cancer Network recommended adopting evidence-based hypofractionated radiotherapy (HFRT). HFRT benefits include reduction in the number of clinical visits for each patient, minimizing potential exposure, and reducing stress on the limited workforce, especially in resource-limited settings as in Low-and-Middle-Income Countries (LMICs). Recent studies for LMICs in Africa have also shown that adopting HFRT can lead to significant cost reductions and increased access to radiotherapy.
View Article and Find Full Text PDFPurpose: This is a computational study to develop a rugged self-powered Radioisotope Identification Device (RIID). The principle of operation relies on the High Energy Current (HEC) concept (Zygmanski and Sajo, Med Phys. 43 4-15, 2016) with measurement of fast electron currents between low-Z and high-Z thin-film electrodes separated by nanoporous aerogel films in a multilayer detector structure whose prototypes were previously investigated (Brivio, Albert, Freund, Gagne, Sajo and Zygmanski, Med Phys, 46 4233-4240, 2019), (Brivio, Albert, Gagne, Freund, Sajo and Zygmanski, J Phys D Appl Phys, 53 265303, 2020).
View Article and Find Full Text PDFPurpose: To develop an efficient and automated methodology for beam data validation for a preconfigured ring gantry linear accelerator using scripting and a one-dimensional (1D) tank with automated couch motions.
Materials And Methods: Using an application programming interface, a program was developed to allow the user to choose a set of beam data to validate with measurement. Once selected the program generates a set of instructions for radiation delivery with synchronized couch motions for the linear accelerator in the form of an extensible markup language (XML) file to be delivered on the ring gantry linear accelerator.
The purpose of the present development is to employ 3D printing to prototype an ion chamber array with a scalable design potentially allowing increased spatial resolution and a larger active area. An additional goal is to design and fabricate a custom size thin-panel detector array with low-Z components. As a proof of principle demonstration, a medium size detector array with 30 × 30 air-vented ion chambers was 3D-printed using PLA as frame for the electrodes.
View Article and Find Full Text PDFPurpose: To explore 3D printing for rapid development of prototype thin slab low-Z/density ionization chamber arrays viable for custom needs in radiotherapy dosimetry and quality assurance (QA).
Materials And Methods: We designed and fabricated parallel plate ionization chambers and ionization chamber arrays using an off-the-shelf 3D printing equipment. Conductive components of the detectors were made of conductive polylactic acid (cPLA) and insulating components were made of acrylonitrile butadiene styrene (ABS).
Purpose: We developed a new class of aerogel-based thin-film self-powered radiation sensors employing high-energy electron current (HEC) in periodic multilayer (high-Z | polyimide aerogel (PA) | low-Z) electrode microstructures.
Materials: Low-Z (Al) and high-Z (Ta) electrodes were deposited on 50 μm-thick PA films to obtain sensors with Al-PA-Ta-PA-Al structures. Sensors were tested with x rays in the 40-120 kVp range and with 2.
An increasing number of studies show that cancer stem cells become more invasive and may escape into blood stream and lymph nodes before they have received a lethal dose during radiation therapy. Recently, it has been found that graphene oxide (GO) can selectively inhibit the proliferative expansion of cancer stem cells across multiple tumor types. In this study, we investigate the feasibility of using GO during radiotherapy to synergistically inhibit cancer stem cells, and lower the risk of cancer metastasis and recurrence.
View Article and Find Full Text PDFThis work shows the feasibility of collecting linear accelerator beam data using just a 1-D water tank and automated couch movements with the goal to maximize the cost effectiveness in resource-limited clinical settings. Two commissioning datasets were acquired: (a) using a standard of practice 3D water tank scanning system (3DS) and (b) using a novel technique to translate a commercial TG-51 complaint 1D water tank via automated couch movements (1DS). The Extensible Markup Language (XML) was used to dynamically move the linear accelerator couch position (and thus the 1D tank) during radiation delivery for the acquisition of inline, crossline, and diagonal profiles.
View Article and Find Full Text PDFNanomedicine (Lond)
April 2018
Aim: In nanoparticle-aided radiotherapy, the computational paradigm has been that inside the cell, nanoparticles are distributed sparsely and solitarily. However, experiments reveal significant cluster formation, which affects radiosensitization and must be considered in clinical treatment planning. We characterize the impact of gold nanoparticle agglomeration on the predicted radiation dose enhancement as function of size, geometry, morphology and incident beam energy.
View Article and Find Full Text PDF