Publications by authors named "Erney Ramirez-Aportela"

Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed.

View Article and Find Full Text PDF
Article Synopsis
  • Single-particle cryo-electron microscopy has advanced significantly in the last decade, improving how we determine the 3D structures of biological molecules.
  • Despite these advancements, the existing knowledge in the field has not been effectively applied to improve the reconstruction of new structures.
  • The article discusses using deep learning as a regularizer to refine these structures, enhancing noise reduction and image alignment, particularly benefiting the study of flexible membrane proteins.
View Article and Find Full Text PDF

Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance.

View Article and Find Full Text PDF

Xmipp is an open-source software package consisting of multiple programs for processing data originating from electron microscopy and electron tomography, designed and managed by the Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions from many other developers over the world. During its 25 years of existence, Xmipp underwent multiple changes and updates. While there were many publications related to new programs and functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013.

View Article and Find Full Text PDF

Summary: The web platform 3DBionotes-WS integrates multiple web services and an interactive web viewer to provide a unified environment in which biological annotations can be analyzed in their structural context. Since the COVID-19 outbreak, new structural data from many viral proteins have been provided at a very fast pace. This effort includes many cryogenic electron microscopy (cryo-EM) studies, together with more traditional ones (X-rays, NMR), using several modeling approaches and complemented with structural predictions.

View Article and Find Full Text PDF

Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule.

View Article and Find Full Text PDF

In recent years, advances in cryoEM have dramatically increased the resolution of reconstructions and, with it, the number of solved atomic models. It is widely accepted that the quality of cryoEM maps varies locally; therefore, the evaluation of the maps-derived structural models must be done locally as well. In this article, a method for the local analysis of the map-to-model fit is presented.

View Article and Find Full Text PDF

Using a new consensus-based image-processing approach together with principal component analysis, the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state have been analysed. These studies revealed concerted motions involving the receptor-binding domain (RBD), N-terminal domain, and subdomains 1 and 2 around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. It is shown that in this data set there are not well defined, stable spike conformations, but virtually a continuum of states.

View Article and Find Full Text PDF

With the help of novel processing workflows and algorithms, we have obtained a better understanding of the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state. We have re-analyzed previous cryo-EM data combining 3D clustering approaches with ways to explore a continuous flexibility space based on 3D Principal Component Analysis. These advanced analyses revealed a concerted motion involving the receptor-binding domain (RBD), N-terminal domain (NTD), and subdomain 1 and 2 (SD1 & SD2) around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations.

View Article and Find Full Text PDF

In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a 'local resolution' type of information. The algorithm () is based on deep-learning 3D feature detection. is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to -factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now.

View Article and Find Full Text PDF

Motivation: Recent technological advances and computational developments have allowed the reconstruction of Cryo-Electron Microscopy (cryo-EM) maps at near-atomic resolution. On a typical workflow and once the cryo-EM map has been calculated, a sharpening process is usually performed to enhance map visualization, a step that has proven very important in the key task of structural modeling. However, sharpening approaches, in general, neglects the local quality of the map, which is clearly suboptimal.

View Article and Find Full Text PDF

The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.

View Article and Find Full Text PDF

Motivation: Cryo electron microscopy (EM) is currently one of the main tools to reveal the structural information of biological macromolecules. The re-construction of three-dimensional (3D) maps is typically carried out following an iterative process that requires an initial estimation of the 3D map to be refined in subsequent steps. Therefore, its determination is key in the quality of the final results, and there are cases in which it is still an open issue in single particle analysis (SPA).

View Article and Find Full Text PDF

FtsZ is a self-assembling GTPase that forms, below the inner membrane, the mid-cell Z-ring guiding bacterial division. FtsZ monomers polymerize head to tail forming tubulin-like dynamic protofilaments, whose organization in the Z-ring is an unresolved problem. Rather than forming a well-defined structure, FtsZ protofilaments laterally associate in vitro into polymorphic condensates typically imaged on surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • FtsZ is a crucial protein in bacterial cell division and is a potential target for new antibiotics, working by polymerizing into filaments that regulate the formation of the division ring.
  • A new antibacterial compound, PC190723, binds to an open cleft in FtsZ, stabilizing the filaments and disrupting the cell division process.
  • Researchers developed fluorescent probes that attach to the assembled FtsZ, providing insights into the FtsZ structural assembly switch and confirming that these probes preferentially bind to FtsZ filaments instead of unassembled proteins, affecting bacterial division at high concentrations.
View Article and Find Full Text PDF

Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs.

View Article and Find Full Text PDF

Unlabelled: The prediction of protein-protein complexes from the structures of unbound components is a challenging and powerful strategy to decipher the mechanism of many essential biological processes. We present a user-friendly protein-protein docking server based on an improved version of FRODOCK that includes a complementary knowledge-based potential. The web interface provides a very effective tool to explore and select protein-protein models and interactively screen them against experimental distance constraints.

View Article and Find Full Text PDF

Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability.

View Article and Find Full Text PDF

SIGN-R1 is a principal receptor for microbial polysaccharides uptake and is responsible for C3 fixation via an unusual complement activation pathway on splenic marginal zone macrophages. In these macrophages, SIGN-R1 is also involved in anti-inflammatory activity of intravenous immunoglobulin by direct interaction with sialylated Fcs. The high-resolution crystal structures of SIGN-R1 carbohydrate recognition domain and its complexes with dextran sulfate or sialic acid, and of the sialylated Fc antibody provide insights into SIGN-R1’s selective recognition of a-2,6-sialylated glycoproteins.

View Article and Find Full Text PDF

Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers.

View Article and Find Full Text PDF

Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division.

View Article and Find Full Text PDF