Background: The synthesis and biological evaluation of 1,4-naphthoquinone derivatives are of great interest since these compounds exhibit strong antibacterial, antifungal, antimalarial, and anticancer activities. The electronic properties of naphthoquinones are usually modulated by attaching functional groups containing nitrogen, oxygen, and sulfur atoms, which tune their biological potency and selectivity.
Methods: A series of 13 amino acid 1,4-naphthoquinone derivatives was synthesized under assisted microwave and ultrasound conditions.
We previously showed that microwave assisted synthesis is the best method for the synthesis of naphthoquinone amino acid and chloride-naphthoquinone amino acid derivatives by a complete evaluation of reaction conditions such as stoichiometry, bases, and pH influence. Following the same strategy, we synthesized chloride and non-chloride tyrosine, valine, and tryptophan-naphthoquinones achieving 85-95%, 80-92%, and 91-95% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone amino acid derivatives mainly display one redox reaction process.
View Article and Find Full Text PDFWe performed an extensive analysis about the reaction conditions of the 1,4-Michael addition of amino acids to 1,4-naphthoquinone and substitution to 2,3-dichloronaphthoquinone, and a complete evaluation of stoichiometry, use of different bases, and the pH influence was performed. We were able to show that microwave-assisted synthesis is the best method for the synthesis of naphthoquinone-amino acid and chloride-naphthoquinone-amino acid derivatives with 79-91% and 78-91% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone-amino acid derivatives mainly display one quasi-reversible redox reaction process.
View Article and Find Full Text PDF