Stability of π-conjugated organic materials remains a critical issue for applications in which these materials and devices based on them are exposed to ambient conditions. Particularly, the initial steps of the reversible and irreversible degradation by molecular oxygen exposure are still not fully explored. Here we present a theoretical study using density functional theory (DFT) to investigate the oxygen effects on the electronic properties of poly(3-hexylthiophene-2,5-diyl) (P3HT).
View Article and Find Full Text PDFQuantum Chemistry calculations within the density functional Theory (DFT) are a powerful feature to obtain the atomistic and molecular properties of macromolecules such as polymers and nanoparticles. DFT calculations are essential to understand the stability of new composite materials. In this work, DFT with the Local Density Approximation (LDA) and norm-conserving pseudopotentials is used to analyze the energetic stability as well the electronic properties when titanium dioxide quantum dots (TiO) are added to an adhesive resin (methacrylate - HEMA - and dimethacrylate - BisGMA - monomers), which presents reliable physical, chemical, and biological properties in dentistry.
View Article and Find Full Text PDF