Publications by authors named "Ernesto Marcos"

The development of live-attenuated vaccines against Dengue virus (DENV) has been problematic. Dengvaxia, licensed in several countries where DENV is endemic, has shown low efficacy profiles and there are safety concerns prohibiting its administration to children younger than 9 years old, and the live-attenuated tetravalent vaccine (LATV) developed by NIAID has proven too reactogenic during clinical trialing. In this work we examined whether the combination of TV005, a LATV-derived formulation, with Tetra DIIIC, a subunit vaccine candidate based on fusion proteins derived from structural proteins from all four DENV serotypes, can overcome the respective limitations of these two vaccine approaches.

View Article and Find Full Text PDF

Tetra DIIIC is a vaccine candidate against dengue virus (DENV) composed by four chimeric proteins that fuse the domain III of the envelope protein of each virus to the corresponding capsid protein. Containing B- and T-cell epitopes, these proteins form aggregates after the incubation with an immunostimulatory oligodeoxynucleotide, and their tetravalent formulation induces neutralizing antibodies and cellular immune response in mice and monkeys. Also, Tetra DIIIC protects mice after challenge with each DENV, and the monovalent formulation obtained from DENV-2 protects monkeys upon homologous viral challenge.

View Article and Find Full Text PDF

Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys.

View Article and Find Full Text PDF

Despite the considerable effort that has been invested in elucidating the mechanisms of protection and immunopathogenesis associated with dengue virus infections, a reliable correlate of protection against the disease remains to be found. Neutralizing Abs, long considered the prime component of a protective response, can exacerbate disease severity when present at subprotective levels, and a growing body of data is challenging the notion that their titers are positively correlated with disease protection. Consequently, the protective role of cell-mediated immunity in the control of dengue infections has begun to be studied.

View Article and Find Full Text PDF

Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease.

View Article and Find Full Text PDF

Background: Growth hormone secretagogues (GHS), among other factors, regulate the release of GH. The biological activity of the secretagogue peptide A233 as a promoter of growth and innate immunity in teleost fish has previously been demonstrated, but its role in the immune system of mammals is not well understood.

Methods: The effect of the peptide was investigated in J774A.

View Article and Find Full Text PDF

There are several dengue vaccine candidates at advanced stages of development, but none of them are licensed. Despite the reactogenicity and immunogenicity profile in humans of the tetravalent ChimeriVax™ dengue vaccine candidate, in efficacy trials, it has failed to confer complete protection against dengue virus (DENV)-1 and DENV-2. However, full protection against the four serotypes had been observed previously in monkeys immunized with this vaccine candidate.

View Article and Find Full Text PDF

Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized.

View Article and Find Full Text PDF

Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice.

View Article and Find Full Text PDF

The role of cellular immune response in dengue virus infection is not yet fully understood. Only few studies in murine models propose that CD8(+) T-cells are associated with protection from infection and disease. At the light of recent reports about the protective role of CD8(+) T-cells in humans and the no correlation between neutralizing antibodies and protection observed in several studies, a vaccine based on cell-mediated immunity constitute an attractive approach.

View Article and Find Full Text PDF

Recombinant fusion proteins containing domain III of the dengue virus envelope protein fused to the P64k protein from Neisseria meningitidis and domain III of dengue virus type 2 (D2) fused to the capsid protein of this serotype were immunogenic and conferred protection in mice against lethal challenge, as reported previously. Combining the domain III-P64k recombinant proteins of dengue virus types 1, 3 and 4 (D1, D3, and D4) with the domain III-capsid protein from D2, we obtained a novel tetravalent formulation containing different antigens. Here, the IgG and neutralizing antibody response, the cellular immune response, and the protective capacity against lethal challenge in mice immunized with this tetravalent formulation were evaluated.

View Article and Find Full Text PDF

Unlabelled: Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR(-/-) mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study.

View Article and Find Full Text PDF

A dengue vaccine must induce protective immunity against the four serotypes of the virus. Our group has developed chimeric proteins consisting of the protein P64k from Neisseria meningitidis and the domain III from the four viral envelope proteins. In this study, the immunogenicity of a tetravalent vaccine formulation using aluminum hydroxide as adjuvant was evaluated in mice.

View Article and Find Full Text PDF

Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity.

View Article and Find Full Text PDF

It was previously reported that DIIIC-2 (a fusion protein composed of domain III of the envelope protein and the capsid protein from dengue 2 virus), as an aggregate antigen from a partially purified preparation, induced a functional protective immune response against dengue 2 virus in the mouse encephalitis model. In the present work, a purification procedure was developed for DIIIC-2, and soluble and aggregated fractions of the purified protein were characterized and evaluated in mice. The purification process rendered a protein preparation of 91 % purity, and the remaining 9 % consisted of fragments and aggregates of the same recombinant protein.

View Article and Find Full Text PDF

The interplay of different inflammatory cytokines induced during dengue virus infection plays a role in either protection or increased disease severity. In this sense, vaccine strategies incorporating whole virus are able to elicit both functional and pathological responses. Therefore, an ideal tetravalent vaccine candidate against dengue should be focused on serotype-specific sequences.

View Article and Find Full Text PDF

Use of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys.

View Article and Find Full Text PDF

In this study, we evaluate in mice a novel formulation containing nucleocapsid-like particles of dengue-2 virus (recNLP) co-immunized with a chimeric protein composed of the dengue-4 envelope domain III fused twice within the meningococcal P64k protein of Neisseria meningitidis (PD24). The animals receiving the PD24-recNLP mixture showed the highest levels of antiviral antibodies. Similar results were obtained for IFNγ secretion levels, indicating a functional Th1 cellular response.

View Article and Find Full Text PDF

Virus-like particles are a highly effective type of subunit vaccine that mimics the overall structure of virus particles without containing infectious genetic material. In this work, a particulate form of the recombinant capsid protein from dengue-2 was evaluated in mice to determine the level of protection against viral challenge and to measure the antigen-induced cell-mediated immunity (CMI). The nucleocapsid-like particles (NLPs) adjuvanted with alum did not induce antiviral antibodies.

View Article and Find Full Text PDF

The capsid protein is one of the three structural proteins of flaviviruses and is the building block of the nucleocapsid. It has also a predominant role in the replication of dengue virus. To obtain nucleocapsid-like particles from recombinant dengue-2 capsid protein produced in E.

View Article and Find Full Text PDF