We investigate semiconductor p-n junction formation by liquid-phase epitaxy (LPE) using metallic pastes incorporating traditional and nontraditional dopants. The LPE technique enables us to control the shape of doping profiles with a low thermal budget through the choice of solvent, total amount of solvent deposited, and process temperature. We focus here on the Al-B, Zn-P, and Sn-Ga chemistries to dope silicon regions using the chemicophysical properties of a low-eutectic-temperature metallic solvent acting as a matrix for the dissolution of a high concentration of a dopant.
View Article and Find Full Text PDFThe collective behavior of biological systems has inspired efforts toward the controlled assembly of synthetic nanomotors. Here we demonstrate the use of acoustic fields to induce reversible assembly of catalytic nanomotors, controlled swarm movement, and separation of different nanomotors. The swarming mechanism relies on the interaction between individual nanomotors and the acoustic field, which triggers rapid migration and assembly around the nearest pressure node.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.