Publications by authors named "Ernesto Lopez-Chavez"

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF
Article Synopsis
  • A new polymeric structure, PMMA-G, combining graphene and polymethylmethacrylate (PMMA), was created to study the effects on the material's optical, magnetic, and electrical properties across three degrees of polymerization: monomer (PMMA-G1), dimer (PMMA-G2), and trimer (PMMA-G3).
  • The study found that incorporating graphene reduced the dielectric constant of PMMA, increased the refractive index by 14.48%, and significantly raised the molar magnetic susceptibility while electrical resistivity increased nearly tenfold.
  • The research utilized computational tools, specifically Materials Studio software, to model and optimize the PMMA-G structures and calculate their various properties based on a 50
View Article and Find Full Text PDF

Due to the thermodynamic conditions prevailing at very shallow depths of calcite stone oil fields, molecular hydrogen has been reported to be released from hydrocarbon or heavy oil located on the surface of the calcite stone. Since this region is physically inaccessible, there is a need to realize modeling and simulation of the hydrogen adsorption and storage process under reservoir conditions. Motivated by the previous problem, in this work, based on recent reports of hydrogen production from oil fields, we present a theoretical methodology to describe the process of hydrogen adsorption on naturally fractured and carbonated (limestone (CaCO)) reservoirs and to quantify their storage capacity.

View Article and Find Full Text PDF

The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups.

View Article and Find Full Text PDF

In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices.

View Article and Find Full Text PDF