Publications by authors named "Ernesto Curty da Costa"

Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination-induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation.

View Article and Find Full Text PDF

Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species.

View Article and Find Full Text PDF

The heart is a highly complex, multicellular solid organ with energy-demanding processes that require a dense vascular network, extensive cell-cell interactions, and extracellular matrix (ECM)-mediated crosstalk among heterogeneous cell populations. Here, we describe the regeneration of left ventricular (LV) wall using decellularized whole rabbit heart scaffolds recellularized exclusively with human induced pluripotent stem cell-derived endothelial cells, cardiomyocytes, and other cardiac cell types. Cells were sequentially delivered to the scaffold using an optimized endothelial cell:cardiomyocyte media.

View Article and Find Full Text PDF

To expand the application of perfusion decellularization beyond isolated single organs, we used the native vasculature of adult and neonatal rats to systemically decellularize the organs of a whole animal in situ. Acellular scaffolds were generated from kidney, liver, lower limb, heart-lung system, and a whole animal body, demonstrating that perfusion decellularization technology is applicable to any perfusable tissue, independent of age. Biochemical and histological analyses demonstrated that organs and organ systems (heart-lung pair and lower limb) were successfully decellularized, retaining their extracellular matrix (ECM) structure and organ-specific composition, as evidenced by differences in organ-specific scaffold stiffness.

View Article and Find Full Text PDF