Publications by authors named "Ernesto Caffarena"

The rising incidence of fungal infections coupled with limited treatment options underscores the urgent need for novel antifungal therapies. Riboswitches, particularly thiamin pyrophosphate (TPP) class, have emerged as promising antimicrobial targets. This study presents a comprehensive genome-wide analysis of TPP riboswitches in 156 medically relevant fungi utilizing advanced covariance models (CMs) tailored for fungal sequences.

View Article and Find Full Text PDF

Drug repositioning is an important therapeutic strategy for treating breast cancer. Hsp90β chaperone is an attractive target for inhibiting cell progression. Its structure has a disordered and flexible linker region between the N-terminal and central domains.

View Article and Find Full Text PDF

Malaria, caused by Plasmodium protozoa with as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of (PfENR) as a promising target for antimalarial drug discovery.

View Article and Find Full Text PDF

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent.

View Article and Find Full Text PDF

Purpose: Noonan syndrome and related disorders are genetic conditions affecting 1:1000-2000 individuals. Variants causing hyperactivation of the RAS/MAPK pathway lead to phenotypic overlap between syndromes, in addition to an increased risk of pediatric tumors. DNA sequencing methods have been optimized to provide a molecular diagnosis for clinical and genetic heterogeneity conditions.

View Article and Find Full Text PDF

β-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable β-glucosidases, but without a clear understanding of their molecular mechanisms.

View Article and Find Full Text PDF

Integrins are transmembrane receptors that play a critical role in many biological processes which can be therapeutically modulated using integrin blockers, such as peptidomimetic ligands. This work aimed to develop new potential β1 integrin antagonists using modeled receptors based on the aligned crystallographic structures and docked with three lead compounds (BIO1211, BIO5192, and TCS2314), widely known as α4β1 antagonists. Lead-compound complex optimization was performed by keeping intact the carboxylate moiety of the ligand, adding substituents in two other regions of the molecule to increase the affinity with the target.

View Article and Find Full Text PDF

is a non-pathogenic trypanosomatid isolated from lizards widely used for heterologous protein expression and extensively studied to understand the pathogenic mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded in genome, but no proteolytic activity was detected. Here, we analyzed leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic activity of the wild-type and overexpressing mutants of leishmanolysin.

View Article and Find Full Text PDF

The spread of antibiotic-resistant bacteria represents a substantial health threat. Current antibiotics act on a few metabolic pathways, facilitating resistance. Consequently, novel regulatory inhibition mechanisms are necessary.

View Article and Find Full Text PDF

Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a global health concern and has been linked to severe neurological pathologies. Although no medication is available yet, many efforts to develop antivirals and host cell binding inhibitors led to attractive drug-like scaffolds, mainly targeting the nonstructural NS2B/NS3 protease (NS2B/NS3pro). NS2B/NS3pro active site has several titratable residues susceptible to pH changes and ligand binding; hence, understanding these residues' protonation is essential to drug design efforts targeting the active site.

View Article and Find Full Text PDF

The activation of GABAA receptors by the neurotransmitter gamma-aminobutyric acid mediates the rapid inhibition response in the central nervous system of mammals. Many neurological and mental health disorders arise from alterations in the structure or function of these pentameric ion channels. GABAA receptors are targets for numerous drugs, including benzodiazepines, which bind to α1β2γ2 GABAA receptors with high affinity to a site in the extracellular domain, between subunits α1 and γ2.

View Article and Find Full Text PDF

Tuberculosis is a world widespread disease, caused by (). Although considered an obligate aerobe, this organism can resist life-limiting conditions such as microaerophily mainly due to its set of enzymes responsible for energy production and coenzyme restoration under these conditions. One of these enzymes is fumarate reductase, an heterotetrameric complex composed of a catalytic (FrdA), an iron-sulfur cluster (FrdB) and two transmembrane (FrdC and FrdD) subunits involved in anaerobic respiration and important for the maintenance of membrane potential.

View Article and Find Full Text PDF

In recent years, therapeutic compounds derived from phytocannabinoids have brought renewed attention to the benefits they offer to ameliorate chronic disease symptoms. Among cannabinoids, tetrahydrocannabinol (THC) is a well-known component of the plant, whose active principles have been studied through the years. Another psychoactive phytocannabinoid, derived from liverworts , perrottetinene (PET), has created interest, especially as a pharmaceutical product and for its legal recreational use.

View Article and Find Full Text PDF

Integrins are cell adhesion receptors that transmit bidirectional signals across the plasma membrane. They are noncovalently linked heterodimeric molecules consisting of two subunits and act as biomarkers in several pathologies. Thus, according to the increase of therapeutic antibody production, some efforts have been applied to produce anti-integrin antibodies.

View Article and Find Full Text PDF

Noncoding RNA (ncRNA) genes produce transcripts involved in a wide range of functions, including catalytic and regulatory functions. Besides, some transcripts have highly complex structures that may impact their activities. Among the largest bacterial ncRNAs, there is the rare GOLLD RNA, which is associated with tRNA genes and supposed to be chromosome- and phage-encoded in specialized groups of bacteria, including those from and orders.

View Article and Find Full Text PDF

Cartilage-hair hypoplasia syndrome (CHH) is an autosomal recessive disorder caused by pathogenic variants of the gene and characterized by metaphyseal bone dysplasia associated with hypotrichosis, immunodeficiency, and predisposition to malignancy. However, the genotype-phenotype correlation in CHH is not well understood. Here, we report a single country cohort of 23 Brazilian patients with clinical and radiological features consistent with CHH.

View Article and Find Full Text PDF
Article Synopsis
  • Hepaciviruses cause liver disease in horses, with three key viruses (NPHV, TDAV, EPgV) capable of chronic infections.
  • This study aimed to model the NS5B polymerase (an enzyme crucial for viral RNA synthesis) of equine hepaciviruses and assess how well current drugs for hepatitis C (sofosbuvir and dasabuvir) interact with them.
  • The results indicated that sofosbuvir could potentially be effective against equine pathogens, as the interactions of equine NS5B models with it were similar to those seen with HCV-NS5B, while interactions with dasabuvir showed less conservation.
View Article and Find Full Text PDF

Limitations in available therapies for trypanosomiases indicate the need for improved medicines. Cysteine proteases cruzain and rhodesain are validated targets for treatment of Chagas disease and human African trypanosomiasis. Previous studies reported a benzimidazole series as potent cruzain inhibitors.

View Article and Find Full Text PDF

Computational methods, applied at the early stages of the drug design process, use current technology to provide valuable insights into the understanding of chemical systems in a virtual manner, complementing experimental analysis. Molecular docking is an in silico method employed to foresee binding modes of small compounds or macromolecules in contact with a receptor and to predict their molecular interactions. Moreover, the methodology opens up the possibility of ranking these compounds according to a hierarchy determined using particular scoring functions.

View Article and Find Full Text PDF

Hepatitis C virus genotype 1a (HCV-1a) comprises clades I and II. The Q80K polymorphism is found predominantly in clade I but rarely in clade II. Here, we investigated whether natural polymorphisms in HCV-1a clade II entailed structural protein changes when occurrence of the Q80K variant was simulated.

View Article and Find Full Text PDF

The ribose-5-phosphate isomerase B (TcRpiB) is a crucial piece in the pentose phosphate pathway and thus is a potential drug target for treatment of Chagas' disease. TcRpiB residues, such as Cys69, Asp45, Glu149 and Pro47, have confirmed their roles in substrate recognition, catalytic reaction and binding site conformation. However, the joint performance of His11 and His102, in the D-ribose-5-phosphate (R5P) in the catalysis is not well understood.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis and synapse formation. The V66M is the most prevalent BDNF mutation in humans and impairs the function and distribution of BDNF. This mutation is related to several psychiatric disorders.

View Article and Find Full Text PDF

Riboswitches are RNA sensors that affect post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch class is the most widespread riboswitch occurring in all three domains of life. Even though it controls different genes involved in the synthesis or transport of thiamine and its phosphorylated derivatives in bacteria, archaea, fungi, and plants, the TPP aptamer has a conserved structure.

View Article and Find Full Text PDF

An exciting debate arises when microscopic mechanisms involved in the denaturation of proteins at high pressures are explained. In particular, the issue emerges when the hydrophobic effect is invoked, given that hydrophobicity cannot elucidate by itself the volume changes measured during protein unfolding. In this work, we study by the use of molecular dynamics simulations and essential dynamics analysis the relation between the solvation dynamics, volume, and water structure when apomyoglobin is subjected to a hydrostatic pressure regime.

View Article and Find Full Text PDF