Publications by authors named "Ernest Y-Z Tan"

One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances.

View Article and Find Full Text PDF

Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today's loophole-free Bell experiments.

View Article and Find Full Text PDF

Device-independent quantum key distribution (DIQKD) offers the prospect of distributing secret keys with only minimal security assumptions, by making use of a Bell violation. However, existing DIQKD security proofs have low noise tolerances, making a proof-of-principle demonstration currently infeasible. We investigate whether the noise tolerance can be improved by using advantage distillation, which refers to using two-way communication instead of the one-way error correction currently used in DIQKD security proofs.

View Article and Find Full Text PDF