Novel electrolyte is being pursued toward exploring Zn chemistry in zinc ion batteries. Here, a fluorine-free liquid crystal (LC) ionomer-type zinc electrolyte is presented, achieving simultaneous regulated water activity and long-range ordering of conduction channels and SEI. Distinct from water network or local ordering in current advances, long-range ordering of layered water channels is realized.
View Article and Find Full Text PDFThe massive adoption of renewable energy especially photovoltaic (PVs) panels is expected to create a huge waste stream once they reach end-of-life (EoL). Despite having the highest embodied energy, present photovoltaic recycling neglects the high purity silicon found in the PV cell. Herein, a scalable and low energy process is developed to recover pristine silicon from EoL solar panel through a method which avoids energy-intensive high temperature processes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
The reversibility of metal anode is a fundamental challenge to the lifetime of rechargeable batteries. Though being widely employed in aqueous energy storage systems, metallic zinc suffers from dendrite formation that severely hinders its applications. Here we report texturing Zn as an effective way to address the issue of zinc dendrite.
View Article and Find Full Text PDF