We have developed a novel, microfabricated, stand-alone microfluidic device that can efficiently sort and concentrate (bio-)analyte molecules by using kinesin motors and microtubules as a chemo-mechanical transduction machine. The device removes hundreds of targeted molecules per second from an analyte stream by translocating functionalized microtubules with kinesin across the stream and concentrating them at a horseshoe-shaped collector. Target biomolecule concentrations increase up to three orders of magnitude within one hour of operation.
View Article and Find Full Text PDFResearch efforts in recent years have been directed toward actively controlling the direction of translocation of microtubules on a kinesin-coated glass surface with E-fields (electric fields), opening up the possibility of engineering controllable nanodevices that integrate microtubules and motor proteins into their function. Here, we present a detailed, biophysical model that quantitatively describes our observations on the steering of microtubules by electric fields. A sudden application of an electric field parallel to the surface and normal to the translocation direction of a microtubule bends the leading end toward the anode, because Coulombic (electrophoretic) forces are dominant on negatively charged microtubules.
View Article and Find Full Text PDFWe present a detailed theoretical and numerical analysis of temperature gradient focusing (TGF) via Joule heating-an analytical species concentration and separation technique relying upon the dependence of an analyte's velocity on temperature due to the temperature dependence of a buffer's ionic strength and viscosity. The governing transport equations are presented, analyzed, and implemented into a quasi-1D numerical model to predict the resulting temperature, velocity, and concentration profiles along a microchannel of varying width under an applied electric field. Numerical results show good agreement with experimental trials presented in previous work.
View Article and Find Full Text PDFWe have previously demonstrated that shear flow aligns microtubules moving on kinesin-coated microchannels with the flow direction, and statistically analyzed the rate of microtubule alignment under different concentrations of kinesin as well as strengths of shear flow. These data qualitatively support the hypothesis that the alignment results from the leading ends of translocating microtubules bending into the direction of the flow due to viscous drag force. Here, we present a cantilever-beam model that quantitatively shows agreement between this hypothesis and observation.
View Article and Find Full Text PDFThe direction of translocation of microtubules on a surface coated with kinesin is usually random. Here we demonstrate and quantify the rate at which externally applied electric fields can direct moving microtubules parallel to the field by deflecting their leading end toward the anode. Effects of electric field strength, kinesin surface density, and microtubule translocation speed on the rate of redirection of microtubules were analyzed statistically.
View Article and Find Full Text PDFWe present an experimental study of temperature gradient focusing (TGF) exploiting an inherent Joule heating phenomenon. A simple variable-width PDMS device delivers rapid and repeatable focusing of model analytes using significantly lower power than conventional TGF techniques. High electric potential applied to the device induces a temperature gradient within the microchannel due to the channel's variable width, and the temperature-dependent mobility of the analytes causes focusing at a specific location.
View Article and Find Full Text PDFWe discovered that a protein concentration device can be constructed using a simple one-layer fabrication process. Microfluidic half-channels are molded using standard procedures in PDMS; the PDMS layer is reversibly bonded to a glass base such as a microscope slide. The microfluidic channels are chevron-shaped, in mirror image orientation, with their apexes designed to pass within approximately 20 microm of each other, forming a thin-walled section between the channels.
View Article and Find Full Text PDFA transportable GC x GC instrument is under development for on-site applications that would benefit from the enhanced resolution and powers of detection, which can be achieved by this method. In the present study, a low-resource GC x GC instrument using an electrically heated and liquid-cooled single-stage thermal modulator that requires no cryogenic materials is evaluated. The instrument also uses at-column heating, thus eliminating the need for a convection oven to house the two columns.
View Article and Find Full Text PDFMicrofluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part".
View Article and Find Full Text PDFIn most models for electrokinetic phenomena at charged interfaces, Boltzmann equilibrium is assumed to be established. Here we show that a long nanopore with significant double layer overlap establishes equilibrium quite slowly and that centimeter-long nanopores can take O(10(5)) s to establish Boltzmann equilibrium. The timescale is determined not by diffusion across the double layer, but by diffusion or convective transport along the length of the pore to reservoirs at its ends.
View Article and Find Full Text PDFWe report the development of a hand-held instrument capable of performing two simultaneous microchip separations (gel and zone electrophoresis), and demonstrate this instrument for the detection of protein biotoxins. Two orthogonal analysis methods are chosen over a single method in order to improve the probability of positive identification of the biotoxin in an unknown mixture. Separations are performed on a single fused-silica wafer containing two separation channels.
View Article and Find Full Text PDFZeta potential data are reviewed for a variety of polymeric microfluidic substrate materials. Many of these materials currently used for microchip fabrication have only recently been employed for generation of electroosmotic flow. Despite their recent history, polymeric microfluidic substrates are currently used extensively for microchip separations and other techniques, and understanding of the surface zeta potential is crucial for experimental design.
View Article and Find Full Text PDFThis paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration.
View Article and Find Full Text PDFWe present a microchip-based, voltage-addressable on/off valve architecture that is fundamentally consistent with the pressures and solvents employed for high-pressure liquid chromatography. Laser photopatterning of polymer monoliths inside glass microchannels is used to fabricate mobile fluid control elements, which are opened and closed by electrokinetic pressures. The glass substrates and crosslinked polymer monoliths operate in water-acetonitrile mixtures and have been shown to hold off pressures as high as 350 bar (5000 p.
View Article and Find Full Text PDFWe have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then selectively exposing the chip to UV light in order to define mobile pistons (or other quasi-two-dimensional shapes) inside the channels. Stops defined in the substrate prevent the part from flushing out of the device but also provide sealing surfaces so that valves and other flow control devices are possible.
View Article and Find Full Text PDF