Publications by authors named "Erna Van Niekerk"

Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing central nervous system neurons in large numbers and across multiple brain regions for extended time periods.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to irreversible functional impairment caused by neuronal loss and the disruption of neuronal connections across the injury site. While several experimental strategies have been used to minimize tissue damage and to enhance axonal growth and regeneration, the corticospinal projection, which is the most important voluntary motor system in humans, remains largely refractory to regenerative therapeutic interventions. To date, one of the most promising pre-clinical therapeutic strategies has been neural stem cell (NSC) therapy for SCI.

View Article and Find Full Text PDF

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury; however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their 'regenerative transcriptome' after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons.

View Article and Find Full Text PDF

We detail the preparation of highly fluorescent quantum dots (QDs), surface-engineered with multifunctional polymer ligands that are compact and readily compatible with strain-promoted click conjugation, and the use of these nanocrystals in immunofluorescence and imaging. The ligand design combines the benefits of mixed coordination (i.e.

View Article and Find Full Text PDF

The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La.

View Article and Find Full Text PDF

Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons.

View Article and Find Full Text PDF

Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the hypothesis that LRP1 activation would activate canonical neurotrophic factor signaling in adult neurons and promote axonal regeneration after spinal cord injury.

View Article and Find Full Text PDF

Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration.

View Article and Find Full Text PDF

Locally generating new proteins in subcellular regions provide means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes.

View Article and Find Full Text PDF

Subcellular regulation of protein synthesis requires the correct localization of messenger RNAs (mRNAs) within the cell. In this study, we investigate whether the axonal localization of neuronal mRNAs is regulated by extracellular stimuli. By profiling axonal levels of 50 mRNAs detected in regenerating adult sensory axons, we show that neurotrophins can increase and decrease levels of axonal mRNAs.

View Article and Find Full Text PDF

A surprisingly large population of mRNAs has been shown to localize to sensory axons, but few RNA-binding proteins have been detected in these axons. These axonal mRNAs include several potential binding targets for the La RNA chaperone protein. La is transported into axonal processes in both culture and peripheral nerve.

View Article and Find Full Text PDF

Neural cells are able to finely tune gene expression through post-transcriptional mechanisms. Localization of mRNAs to subcellular regions has been detected in neurons, oligodendrocytes, and astrocytes providing these domains with a locally renewable source of proteins. Protein synthesis in dendrites has most frequently been associated with synaptic plasticity, while axonally synthesized proteins appear to facilitate pathfinding and injury responses.

View Article and Find Full Text PDF

Both cyclic AMP (cAMP) and nerve growth factor (NGF) have been shown to cause rapid activation of cAMP response element-binding protein (CREB) by phosphorylation of serine 133, but additional regulatory events contribute to CREB-targeted gene expression. Here, we have used stable transfection with a simple cAMP response element (CRE)-driven reporter to address the kinetics of CRE-dependent transcription during neuronal differentiation of PC12 cells. In naive cells, dibutyryl cAMP (dbcAMP) generated a rapid increase in CRE-driven luciferase activity by 5 h that returned to naive levels by 24 h.

View Article and Find Full Text PDF