Publications by authors named "Erms Pereira"

The synthesis of ferroelectric nematic liquid crystals (FNLCs) concludes the long wait for their existence and potential usage in multiple liquid crystal based applications. In FNLCs, electric polarization in the nematic phase significantly decreases the switching time of in-on display pixels. In this article, we report the occurrence of translation symmetry breaking for heat propagation along the director field n[over ̂] in the ferroelectric nematic phase.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Controlling light and heat via metamaterials has presented interesting technological applications using transformation optics (TO) and transformation thermodynamics (TT). However, such devices are commonly mono-physics and mono-purpose, because the used metamaterial is designed to deal with one type of physical mechanisms. Here we demonstrate, for the first time, how to connect TO and TT via the liquid crystal 4-Cyano-4'-pentylbiphenyl (5CB) and, to exemplify such link, we present a multiphysics, multi-purpose device that simultaneously controls light and heat using such material.

View Article and Find Full Text PDF

One interesting way to control heat is to use devices designed by transformation thermics, where artificial media are used. However, once manufactured (either repelling or concentrating heat, for example), besides being mono-purpose, such devices are designed according to a specific geometric boundary conditions. Another problem is the temperature dependence of the materials employed, since their properties are sometimes considered temperature-invariant.

View Article and Find Full Text PDF

The physics of light interference experiments is well established for nematic liquid crystals. Using well-known techniques, it is possible to obtain important quantities, such as the differential scattering cross section and the saddl-splay elastic constant K24. However, the usual methods to retrieve the latter involve adjusting of computational parameters through visual comparisons between the experimental light interference pattern or a (2) H-NMR spectral pattern produced by an escaped-radial disclination, and their computational simulation counterparts.

View Article and Find Full Text PDF