Publications by authors named "Ermira Lleshi"

Combining drugs can enhance their clinical efficacy, but the number of possible combinations and inter-tumor heterogeneity make identifying effective combinations challenging, while existing approaches often overlook clinically relevant activity. We screen one of the largest cell line panels (N = 757) with 51 clinically relevant combinations and identify responses at the level of individual cell lines and tissue populations. We establish three response classes to model cellular effects beyond monotherapy: synergy, Bliss additivity, and independent drug action (IDA).

View Article and Find Full Text PDF

Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.

View Article and Find Full Text PDF

Combinations of anti-cancer drugs can overcome resistance and provide new treatments. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments.

View Article and Find Full Text PDF

Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs with genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate cellular drug mechanism-of-action. We observed an enrichment for positive associations between the profile of drug sensitivity and knockout of a drug's nominal target, and by leveraging protein-protein networks, we identified pathways underpinning drug sensitivity.

View Article and Find Full Text PDF