Introduction: Diabetes mellitus (DM) impairs wound healing. The aim was to determine whether DM influences mitochondrial respiration in wounded skin (WS) and non-wounded skin (NWS), in a pre-clinical wound healing model of streptozotocin (STZ)-induced diabetes.
Methods: Six weeks after diabetes induction, two wounds were created in the back of C57BL/J6 mice.
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections.
View Article and Find Full Text PDFAntibiotics (Basel)
February 2023
Diabetic foot ulcers (DFU) are one of the most serious and devastating complications of diabetes and account for a significant decrease in quality of life and costly healthcare expenses worldwide. This condition affects around 15% of diabetic patients and is one of the leading causes of lower limb amputations. DFUs generally present poor clinical outcomes, mainly due to the impaired healing process and the elevated risk of microbial infections which leads to tissue damage.
View Article and Find Full Text PDFDysfunction in key cellular organelles has been linked to diabetic complications. This study intended to investigate the alterations in the unfolded protein response (UPR), autophagy, and mitochondrial function, which are part of the endoplasmic reticulum (ER) stress response, in wound healing (WH) under diabetes conditions. WH mouse models were used to evaluate the UPR, autophagy, mitochondrial fusion, fission, and biogenesis as well as mitophagy in the skin of control and diabetic mice at baseline and 10 days after wounding.
View Article and Find Full Text PDFA diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site.
View Article and Find Full Text PDFPurpose: Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR.
Methods: Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay.
Endothelial cell (EC) activity is essential for tissue regeneration in several (patho)physiological contexts. However, our capacity to deliver biomolecules capable of controlling EC fate is relatively limited. Here, we screened a library of microRNA (miR) mimics and identified 25 miRs capable of enhancing the survival of ECs exposed to ischemia-mimicking conditions.
View Article and Find Full Text PDFDiabetic foot ulcer (DFU) is a devastating complication, affecting around 15% of diabetic patients and representing a leading cause of non-traumatic amputations. Notably, the risk of mixed bacterial-fungal infection is elevated and highly associated with wound necrosis and poor clinical outcomes. However, it is often underestimated in the literature.
View Article and Find Full Text PDFBackground: The cannabinoid receptor type-1 (CBR) is a major regulator of metabolism, growth and inflammation. Yet, its potential role in the skin is not well understood. Our aim was to evaluate the role of CBR in aging-like diabetic skin changes by using a CBR knockout mouse model.
View Article and Find Full Text PDFVisible impairments in skin appearance, as well as a subtle decline in its functionality at the molecular level, are hallmarks of skin aging. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-pathway, which is important in controlling inflammation and oxidative stress that occur during aging, can be triggered by sulforaphane (SFN), an isothiocyanate found in plants from the Brassicaceae family. This study aimed to assess the effects of SFN intake on age-related skin alterations.
View Article and Find Full Text PDFBovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with , , and models. Cell migration and proliferation were tested on keratinocytes and on porcine ears.
View Article and Find Full Text PDFExtracellular vesicles (EV) are a promising therapeutic tool in regenerative medicine. These particles were shown to accelerate wound healing, through delivery of regenerative mediators, such as microRNAs. Herein we describe an optimized and upscalable process for the isolation of EV smaller than 200 nm (sEV), secreted by umbilical cord blood mononuclear cells (UCB-MNC) under ischemic conditions and propose quality control thresholds for the isolated vesicles, based on the thorough characterization of their protein, lipid and RNA content.
View Article and Find Full Text PDFWound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed.
View Article and Find Full Text PDFNon-healing diabetic foot ulcers (DFUs) are a serious complication in diabetic patients. Their incidence has increased in recent years. Although there are several treatments for DFUs, they are often not effective enough to avoid amputation.
View Article and Find Full Text PDFAims: This study aimed to investigate the effect of lymphocytes in wound healing and the underlying mechanisms, in diabetic and non-diabetic mice, using Balb/c recombination activating gene (Rag)-2 and interleukin 2 receptor gamma (IL-2Rγ) double knockout (KO) (RAG2 IL-2Rγ) mice.
Main Methods: Wound healing in vivo was performed in control and STZ-induced diabetic mice, in both KO and WT mice. Inflammation and ROS production were evaluated by immunofluorescence microscopy analysis, antioxidant enzymes and angiogenesis were evaluated by quantitative PCR and immunofluorescence microscopy analysis, and wound closure kinetics evolution was evaluated by measurement of acetate tracing of the wound area.
Small extracellular vesicles (SEVs) offer a promising strategy for tissue regeneration, yet their short lifetime at the injured tissue limits their efficacy. Here, we show that kinetics of SEV delivery impacts tissue regeneration at tissue, cellular, and molecular levels. We show that multiple carefully timed applications of SEVs had superior regeneration than a single dose of the same total concentration of SEVs.
View Article and Find Full Text PDFTreatment for chronic diabetic foot ulcers is limited by the inability to simultaneously address the excessive inflammation and impaired re-epithelization and remodeling. Impaired re-epithelization leads to significantly delayed wound closure and excessive inflammation causes tissue destruction, both enhancing wound pathogen colonization. Among many differentially expressed microRNAs, miR-155 is significantly upregulated and fibroblast growth factor 7 (FGF7) mRNA (target of miR-155) and protein are suppressed in diabetic skin, when compared to controls, leading us to hypothesize that topical miR-155 inhibition would improve diabetic wound healing by restoring FGF7 expression.
View Article and Find Full Text PDFCalcium dobesilate (CaD) has been prescribed to some patients in the early stages of diabetic retinopathy to delay its progression. We previously reported that the treatment of diabetic animals (4 weeks of diabetes) with CaD, during the last 10 days of diabetes, prevents blood-retinal barrier breakdown. Here, we aimed to investigate whether later treatment of diabetic rats with CaD would reverse inflammatory processes in the retina.
View Article and Find Full Text PDFDiabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.
View Article and Find Full Text PDFInt J Low Extrem Wounds
June 2015
Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia.
View Article and Find Full Text PDFDiabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds.
View Article and Find Full Text PDFDiabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing.
View Article and Find Full Text PDFImpaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated.
View Article and Find Full Text PDFOne important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications.
View Article and Find Full Text PDF