Publications by authors named "Ermanno Cordelli"

Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables early treatment.

View Article and Find Full Text PDF

Despite the advantages offered by personalized treatments, there is presently no way to predict response to chemoradiotherapy in patients with non-small cell lung cancer (NSCLC). In this exploratory study, we investigated the application of deep learning techniques to histological tissue slides (deep pathomics), with the aim of predicting the response to therapy in stage III NSCLC. We evaluated 35 digitalized tissue slides (biopsies or surgical specimens) obtained from patients with stage IIIA or IIIB NSCLC.

View Article and Find Full Text PDF

Background: The aim of our study was to develop a radiomic tool for the prediction of clinically significant prostate cancer.

Methods: From September 2020 to December 2021, 91 patients who underwent magnetic resonance imaging prostate fusion biopsy at our institution were selected. Prostate cancer aggressiveness was assessed by combining the three orthogonal planes-Llocal binary pattern the 3Dgray level co-occurrence matrix, and other first order statistical features with clinical (semantic) features.

View Article and Find Full Text PDF

Background: The incidence of breast cancer metastasis has decreased over the years. However, 20-30% of patients with early breast cancer still die from metastases. The purpose of this study is to evaluate the performance of a Deep Learning Convolutional Neural Networks (CNN) model to predict the risk of distant metastasis using 3T-MRI DCE sequences (Dynamic Contrast-Enhanced).

View Article and Find Full Text PDF

High- and low-risk endometrial carcinoma (EC) differ in whether or not a lymphadenectomy is performed. We aimed to develop MRI-based radio-genomic models able to preoperatively assess lymph-vascular space invasion (LVSI) and discriminate between low- and high-risk EC according to the ESMO-ESGO-ESTRO 2020 guidelines, which include molecular risk classification proposed by "ProMisE". This is a retrospective, multicentric study that included 64 women with EC who underwent 3T-MRI before a hysterectomy.

View Article and Find Full Text PDF

Lung cancer accounts for more deaths worldwide than any other cancer disease. In order to provide patients with the most effective treatment for these aggressive tumours, multimodal learning is emerging as a new and promising field of research that aims to extract complementary information from the data of different modalities for prognostic and predictive purposes. This knowledge could be used to optimise current treatments and maximise their effectiveness.

View Article and Find Full Text PDF

Background: The axillary lymph node status (ALNS) is one of the most important prognostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as convolutional neural networks (CNNs), are able to autonomously learn the set of features directly from images for a specific task.

View Article and Find Full Text PDF

Background: To evaluate the clinical utility of an Artificial Intelligence (AI) radiology solution, Quantib Prostate, for prostate cancer (PCa) lesions detection on multiparametric Magnetic Resonance Images (mpMRI). Methods: Prostate mpMRI exams of 108 patients were retrospectively studied. The diagnostic performance of an expert radiologist (>8 years of experience) and of an inexperienced radiologist aided by Quantib software were compared.

View Article and Find Full Text PDF

Background: Secretory and medullary carcinomas of the breast are rare subtypes of infiltrating ductal carcinoma. The different histological behavior of medullary and secretory carcinomas is correlated with different imaging features on mammography, ultrasound, and magnetic resonance imaging.

Case Report: We report the case of a Caucasian woman in which both subtypes of tumors were diagnosed in an 8-year time interval and evaluate, in antithesis, histopathological and imaging aspects of medullary and secretory carcinoma.

View Article and Find Full Text PDF

Background: to evaluate the contribution of edema associated with histological features to the prediction of breast cancer (BC) prognosis using T2-weighted MRI radiomics.

Methods: 160 patients who underwent staging 3T-MRI from January 2015 to January 2019, with 164 histologically proven invasive BC lesions, were retrospectively reviewed. Patient data (age, menopausal status, family history, hormone therapy), tumor MRI-features (location, margins, enhancement) and histological features (histological type, grading, ER, PgR, HER2, Ki-67 index) were collected.

View Article and Find Full Text PDF

Lung cancer is by far the leading cause of cancer death among both men and women. Radiation therapy is one of the main approaches to lung cancer treatment, and its planning is crucial for the therapy outcome. However, the current practice that uniformly delivers the dose does not take into account the patient-specific tumour features that may affect treatment success.

View Article and Find Full Text PDF

Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem.

View Article and Find Full Text PDF

The year 2020 was characterized by the COVID-19 pandemic that has caused, by the end of March 2021, more than 2.5 million deaths worldwide. Since the beginning, besides the laboratory test, used as the gold standard, many applications have been applying deep learning algorithms to chest X-ray images to recognize COVID-19 infected patients.

View Article and Find Full Text PDF

Background: axillary lymph node (LN) status is one of the main breast cancer prognostic factors and it is currently defined by invasive procedures. The aim of this study is to predict LN metastasis combining MRI radiomics features with primary breast tumor histological features and patients' clinical data.

Methods: 99 lesions on pre-treatment contrasted 3T-MRI (DCE).

View Article and Find Full Text PDF

Background: Biological phenomena usually evolves over time and recent advances in high-throughput microscopy have made possible to collect multiple 3D images over time, generating [Formula: see text] (or 4D) datasets. To extract useful information there is the need to extract spatial and temporal data on the particles that are in the images, but particle tracking and feature extraction need some kind of assistance.

Results: This manuscript introduces our new freely downloadable toolbox, the Visual4DTracker.

View Article and Find Full Text PDF

The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival.

View Article and Find Full Text PDF

Background And Objective: Investigation of membrane fluidity by metabolic functional imaging opens up a new and important area of translational research in type 1 diabetes mellitus, being a useful and sensitive biomarker for disease monitoring and treatment. We investigate here how data on membrane fluidity can be used for diabetes monitoring.

Methods: We present a decision support system that distinguishes between healthy subjects, type 1 diabetes mellitus patients, and type 1 diabetes mellitus patients with complications.

View Article and Find Full Text PDF

Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins can alter lipid density, packing and interactions, and are considered an important factor that affects fluidity variation in membranes. Red blood cells (RBC) membrane physical state, showing pronounced alterations in Type 1 diabetes mellitus (T1DM), could be the ideal candidate for monitoring the disease progression and the effects of therapies. On these grounds, the measurement of RBC membrane fluidity alterations can furnish a more sensitive index in T1DM diagnosis and disease progression than Glycosylated hemoglobin (HbA1c), which reflects only the information related to glycosylation processes.

View Article and Find Full Text PDF

Achieving a comprehensive knowledge of the human brain cytoarchitecture is a fundamental step to understand how the nervous system works, i.e., one of the greatest challenge of 21(st) century science.

View Article and Find Full Text PDF