Publications by authors named "Ermakova M"

Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function.

View Article and Find Full Text PDF

The superior productivity of C plants is achieved via a metabolic C cycle which acts as a CO pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells.

View Article and Find Full Text PDF

Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer.

View Article and Find Full Text PDF

The article is of a review nature and is devoted to tremor, one of the maladaptive and difficult-to-treat symptoms of Parkinson's disease (PD). Along with the classic rest tremor, patients with PD may experience tremor of other modalities: postural tremor, kinetic tremor, which reflects a multimodal mechanism of tremor formation involving multiple neurotransmitter systems. The unpredictable response to therapeutic options, the ambiguous response to levodopa, also reflects the role of multiple underlying pathophysiological processes.

View Article and Find Full Text PDF

Sorghum is one of the most important crops providing food and feed in many of the world's harsher environments. Sorghum utilizes the C pathway of photosynthesis in which a biochemical carbon-concentrating mechanism results in high CO assimilation rates. Overexpressing the Rieske FeS subunit of the Cytochrome b f complex was previously shown to increase the rate of photosynthetic electron transport and stimulate CO assimilation in the model C plant Setaria viridis.

View Article and Find Full Text PDF

The health risks associated with transferring embryos classified as mosaic by preimplantation genetic testing for aneuploidies (PGT-A) are currently unknown. Such embryos produce PGT-A results indicating the presence of both euploid and aneuploid cells and have historically been deselected from transfer and grouped with uniformly aneuploid embryos as 'abnormal'. In recent years, numerous groups have reported the intentional transfer of mosaic embryos in the absence of uniformly euploid embryos, largely observing births of seemingly healthy babies.

View Article and Find Full Text PDF

Sedoheptulose-1,7-bisphosphatase (SBPase) is one of the rate-limiting enzymes of the Calvin cycle, and increasing the abundance of SBPase in C3 plants provides higher photosynthetic rates and stimulates biomass and yield. C4 plants usually have higher photosynthetic rates because they operate a biochemical CO2-concentrating mechanism between mesophyll and bundle sheath cells. In the C4 system, SBPase and other enzymes of the Calvin cycle are localized to the bundle sheath cells.

View Article and Find Full Text PDF

Photosynthesis is fundamental for plant growth and yield. The cytochrome b f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex.

View Article and Find Full Text PDF

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (A ) and electron transport-limited (A ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations.

View Article and Find Full Text PDF

The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O -sensitive N -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O (a Mehler-like reaction).

View Article and Find Full Text PDF

ATP, produced by the light reactions of photosynthesis, acts as the universal cellular energy cofactor fuelling all life processes. Chloroplast ATP synthase produces ATP using the proton motive force created by solar energy-driven thylakoid electron transport reactions. Here we investigate how increasing abundance of ATP synthase affects leaf photosynthesis and growth of rice, Oryza sativa variety Kitaake.

View Article and Find Full Text PDF
Article Synopsis
  • When C leaves are in low light, CO levels in bundle sheath cells drop, increasing photorespiration and reducing plant efficiency but can be improved through acclimation strategies.* -
  • The study focuses on the anatomy and electron transport of Setaria viridis under low-light conditions, showing how they adapt to maintain photosynthesis.* -
  • The findings suggest that optimizing light reactions through strategies like facilitating light penetration and enhancing cyclic electron flow may be more effective for shade tolerance than changing carbon metabolism, offering potential for crop enhancement.*
View Article and Find Full Text PDF

Various types of COVID-19 vaccines, including adenovirus, mRNA, and inactivated ones, have been developed and approved for clinical use worldwide. Inactivated vaccines are produced using a proven technology that is widely used for the production of vaccines for the prevention and control of infectious diseases, including influenza and poliomyelitis. The development of inactivated whole-virion vaccines commonly includes several stages: the production of cellular and viral biomass in cell culture; inactivation of the virus; filtration and ultrafiltration; chromatographic purification of the viral antigen; and formulation with stabilizers and adjuvants.

View Article and Find Full Text PDF

In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs).

View Article and Find Full Text PDF

A fundamental limitation of photosynthetic carbon fixation is the availability of CO. In C plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO diffusion in facilitating C photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from (foxtail millet) and discovered that SiPIP2;7 is CO-permeable.

View Article and Find Full Text PDF

Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C grasses. SWEETs have not been well studied in C species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one.

View Article and Find Full Text PDF

C photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO concentration at the site of CO fixation. C plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity.

View Article and Find Full Text PDF

Introduction of a C photosynthetic mechanism into C crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters.

View Article and Find Full Text PDF

In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O to H O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp.

View Article and Find Full Text PDF

The international C rice consortium aims to introduce into rice a high capacity photosynthetic mechanism, the C pathway, to increase yield. The C pathway is characterised by a complex combination of biochemical and anatomical specialisation that ensures high CO partial pressure at RuBisCO sites in bundle sheath (BS) cells. Here we report an update of the progress of the C rice project.

View Article and Find Full Text PDF

Xanthophylls are a class of carotenoids that are important micronutrients for humans. They are often found esterified with fatty acids in fruits, vegetables, and certain grains, including bread wheat (). Esterification promotes the sequestration and accumulation of carotenoids, thereby enhancing stability, particularly in tissues such as in harvested wheat grain.

View Article and Find Full Text PDF

C photosynthesis is characterised by a CO concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C photosynthesis. Cytochrome is a key control point of electron transport in C plants.

View Article and Find Full Text PDF

Resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS) are optical methods applicable to the non-invasive detection of carotenoids in human skin. RRS is the older, more thoroughly validated method, whereas RS is newer and has several advantages. Since collective skin carotenoid levels serve as a biomarker for vegetable and fruit intake, both methods hold promise as convenient screening tools for assessment of dietary interventions and correlations between skin carotenoids and health and disease outcomes.

View Article and Find Full Text PDF

Purpose: Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population.

Methods: Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality.

View Article and Find Full Text PDF

Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light.

View Article and Find Full Text PDF