Antimicrob Agents Chemother
June 2020
The treatment of dogs naturally infected with using meglumine antimoniate (MA) encapsulated in conventional liposomes (LC) in association with allopurinol has been previously reported to promote a marked reduction in the parasite burden in the main infection sites. Here, a new assay in naturally infected dogs was performed using a novel liposome formulation of MA consisting of a mixture of conventional and long-circulating (PEGylated) liposomes (LCP), with expected broader distribution among affected tissues of the mononuclear phagocyte system. Experimental groups of naturally infected dogs were as follows: LCP plus Allop, receiving LCP intravenously as 2 cycles of 6 doses (6.
View Article and Find Full Text PDFObjective: Test the hypothesis that pegylated meglumine antimoniate-containing liposomes (LMA) and their mixture with non-pegylated (conventional) LMA may be more effective than conventional LMA against visceral leishmaniasis (VL), because of wider drug distribution among different mononuclear phagocyte system (MPS) tissues.
Methods: Sb was determined in the blood and MPS tissues after administration of pegylated or conventional LMA intravenously to mongrel dogs naturally infected with Leishmania infantum and Swiss mice. Pegylated and conventional LMA as well as their mixture were evaluated for their antileishmanial efficacy in BALB/c infected with L.
An innovative liposomal formulation of meglumine antimoniate (LMA) was recently reported to promote both long-term parasite suppression and reduction of infectivity to sand flies in dogs with visceral leishmaniasis. However, 5 months after treatment, parasites were still found in the bone marrow of all treated dogs. In order to improve treatment with LMA, the present study aimed to evaluate its efficacy in combination with allopurinol.
View Article and Find Full Text PDFWhether ultradeformable vesicles pass intact through the stratum corneum and can promote the transdermal absorption of any substance remain open questions. This paper presents different experimental approaches, based on the use of calcein as hydrophilic fluorescent marker, to probe the physicochemical and pharmacokinetic characteristics of these vesicles. Ultradeformable membranes made from natural phosphatidylcholine and sodium cholate were found to be highly permeable to calcein, as a result of the permeabilizing effects of sodium cholate and ethanol.
View Article and Find Full Text PDF