J Pharm Biomed Anal
November 2023
Letermovir is a cytomegalovirus inhibitor for cytomegalovirus infection a hematopoietic-cell transplantation. In the degradation test of Letermovir, five new impurities were detected at levels of ND ∼ 2.21 % (by oxide, thermal or photolytic).
View Article and Find Full Text PDFObjective: Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report.
View Article and Find Full Text PDFPurpose: Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been reported to be overexpressed in non-small-cell lung cancer (NSCLC) and to correlate with malignant proliferation. However, the mechanism of high MTHFD2 expression in NSCLC has not been clarified.
Methods: qPCR, western blot, and immunofluorescence experiments were used to measure the expression of related mRNAs and proteins.
Neurochem Res
November 2021
Our previous studies revealed that the expression of stanniocalcin-1 (STC1) in astrocytes increased under hypoxic conditions. However, the role of STC1 in hypoxic astrocytes is not well understood. In this work, we first showed the increased expression of STC1 in astrocyte cell line and astrocytes in the brain tissues of mice after exposure to hypoxia.
View Article and Find Full Text PDFBackground: Studies have revealed the protective effect of DL-3-n-butylphthalide (NBP) against diseases associated with ischemic hypoxia. However, the role of NBP in animals with hypobaric hypoxia has not been elucidated. This study investigated the effects of NBP on rodents with acute and chronic hypobaric hypoxia.
View Article and Find Full Text PDFBackground: Acute mountain sickness (AMS) is a crucial public health problem for high altitude travelers. Discriminating individuals who are not developing (AMS resistance, AMS-) from developing AMS (AMS susceptibility, AMS+) at baseline would be vital for disease prevention. Salivary microRNAs (miRNAs) have emerged as promising non-invasive biomarkers for various diseases.
View Article and Find Full Text PDFAs a hallmark for glioblastoma (GBM), high heterogeneity causes a variety of phenotypes and therapeutic responses among GBM patients, and it contributes to treatment failure. Moreover, hypoxia is a predominant feature of GBM and contributes greatly to its phenotype. To analyse the landscape of gene expression and hypoxic characteristics of GBM cells and their clinical significance in GBM patients, we performed transcriptome analysis of the GBM cell line U87-MG and the normal glial cell line HEB under normoxia and hypoxia conditions, with the results of which were analysed using established gene ontology databases as well as The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia.
View Article and Find Full Text PDFMitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear.
View Article and Find Full Text PDFMitochondria-associated membranes (MAM) are a well-recognized contact link between the mitochondria and endoplasmic reticulum that affects mitochondrial biology and vascular smooth muscle cells (VSMCs) proliferation via the regulation of mitochondrial Ca(Ca) influx. Nogo-B receptor (NgBR) plays a vital role in proliferation, epithelial-mesenchymal transition, and chemoresistance of some tumors. Recent studies have revealed that downregulation of NgBR, which stimulates the proliferation of VSMCs, but the underlying mechanism remains unclear.
View Article and Find Full Text PDFHypoxia is a predominant feature in glioblastoma (GBM) and contributes greatly to its drug resistance. However, the molecular mechanisms which are responsible for the development of the resistant phenotype of GBM under hypoxic conditions remain unclear. To analyze the key pathways promoting therapy resistance in hypoxic GBM, we utilized the U87-MG cell line as a human GBM cell model and the human brain HEB cell line as a non-neoplastic brain cell model.
View Article and Find Full Text PDFThe modulation of arachidonic acid (AA) metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS) model. Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude.
View Article and Find Full Text PDFAs a typical model of hypoxia‑induced excessive erythrocytosis, high altitude polycythemia (HAPC) results in microcirculation disturbance, aggravates tissue hypoxia and results in a severe clinical outcome, without any effective intervention methods except for returning to an oxygen‑rich environment. The present study aimed to explore potential therapeutic targets which may participate in the recovery of HAPC by studying the mechanisms of reducing the hemoglobin (HB) concentration during re‑oxygenation. A total of 14 and 13 subjects were recruited over a 5,300 m distance and 5,170 m area.
View Article and Find Full Text PDFHypoxic preconditioning (HPC) is well‑known to exert a protective effect against hypoxic injury; however, the underlying molecular mechanism remains unclear. The present study utilized a serum metabolomics approach to detect the alterations associated with HPC. In the present study, an animal model of HPC was established by exposing adult BALB/c mice to acute repetitive hypoxia four times.
View Article and Find Full Text PDFDiverse response patterns to re-oxygenation lead to various physiological or pathological phenotypes, but now lack of systematic research models in vivo. High-altitude de-acclimatization syndrome (HADAS) describes systematic alterations of re-oxygenation returning to plain after a long living in high altitude. In this study, we aim at employing a comprehensive metabolomics to explore the mechanisms for different reactions to re-oxygenation based on systematic quantitation scoring methods of HADAS model.
View Article and Find Full Text PDFAcute mountain sickness (AMS), which may progress to life-threatening high-altitude cerebral edema, is a major threat to millions of people who live in or travel to high altitude. Although studies have revealed the risk factors and pathophysiology theories of AMS, the molecular mechanisms of it do not comprehensively illustrate. Here, we used a system-level methodology, RNA sequencing, to explore the molecular mechanisms of AMS at genome-wide level in 10 individuals.
View Article and Find Full Text PDFAcute mountain sickness (AMS) is a common disabling condition in individuals experiencing high altitudes, which may progress to life-threatening high altitude cerebral edema. Today, no established biomarkers are available for prediction the susceptibility of AMS. MicroRNAs emerge as promising sensitive and specific biomarkers for a variety of diseases.
View Article and Find Full Text PDFAltitude acclimatization is a physiological process that restores oxygen delivery to the tissues and promotes oxygen use under high altitude hypoxia. High altitude sickness occurs in individuals without acclimatization. Unraveling the molecular underpinnings of altitude acclimatization could help understand the beneficial body responses to high altitude hypoxia as well as the altered biological events in un-acclimatized individuals.
View Article and Find Full Text PDFThe exposure of healthy subjects to high altitude represents a model to explore the pathophysiology of diseases related to tissue hypoxia. We explored a plasma metabolomics approach to detect alterations induced by the exposure of subjects to high altitude. Plasma samples were collected from 60 subjects both on plain and at high altitude (5300 m).
View Article and Find Full Text PDFRuthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised.
View Article and Find Full Text PDFWe have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226).
View Article and Find Full Text PDFFiber Bragg grating (FBG) sensors are extensively used to measure surface temperatures. However, the temperature gradient effect of a surface-mounted FBG sensor is often overlooked. A surface-type temperature standard setup was prepared in this study to investigate the measurement errors of FBG temperature sensors.
View Article and Find Full Text PDFPersonalized oncology significantly relies on the development of theranostic agents to integrate cancer therapeutics and diagnostics. Current strategy for development of such multifunctional agents requires multistep chemical conjugation with cancer specific ligands, contrast agents and therapeutic drugs. In this study, we reported a near infrared (NIR) heptamethine indocyanine dye, IR-780, which selectively accumulated in the mitochondria of drug-resistant human lung cancer cells (A549/DR) and significantly inhibited cell growth, self-renewal and migration without the need of any chemical conjugation.
View Article and Find Full Text PDFIR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential.
View Article and Find Full Text PDF