We report a novel mechanical response of few-layer graphene, h-BN, and MoS(2) to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%.
View Article and Find Full Text PDFWhen two identical two-dimensional periodic structures are superposed, a mismatch rotation angle between the structures generates a superlattice. This effect is commonly observed in graphite, where the rotation between graphene layers generates Moiré patterns in scanning tunneling microscopy images. Here, a study of intravalley and intervalley double-resonance Raman processes mediated by static potentials in rotationally stacked bilayer graphene is presented.
View Article and Find Full Text PDFRaman scattering is used to study the effect of low energy (90 eV) Ar(+) ion bombardment in graphene samples as a function of the number of layers N. The evolution of the intensity ratio between the G band (1585 cm(-1)) and the disorder-induced D band (1345 cm(-1)) with ion fluence is determined for mono-, bi-, tri- and ∼50-layer graphene samples, providing a spectroscopy-based method to study the penetration of these low energy Ar(+) ions in AB Bernal stacked graphite, and how they affect the graphene sheets. The results clearly depend on the number of layers.
View Article and Find Full Text PDF