In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with β-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms.
View Article and Find Full Text PDFEarly in the drug discovery process, the identification of cytochrome P450 (CYP) time-dependent inhibition (TDI) is an important step for compound optimization. Here we describe a high-throughput, automated method for the evaluation of TDI utilizing human liver microsomes and conventional CYP-specific mass spectrometer-based probes in a 384-well format. One of the key differences from other published TDI assays is the use of a shift in area the under curve of the percent activity remaining versus inhibitor concentration plot (AUC shift) rather than the traditional fold-shift in IC50, to determine the magnitude of TDI.
View Article and Find Full Text PDFHere we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps.
View Article and Find Full Text PDFHere we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps.
View Article and Find Full Text PDFIn the early stages of drug discovery, the formation of reactive metabolites is often assessed by co-incubating the drug in liver microsomes with a trapping agent in the presence of NADPH. Our group assessed the capability of commonly used trapping agents to reversibly inhibit major cytochrome P450 (CYP) isoforms. Glutathione and cyanide did not inhibit the enzymes at concentrations up to 10 mM; however methoxylamine did show inhibition, with IC(50) values of 0.
View Article and Find Full Text PDFCompound 1 (SNS-314) is a potent and selective Aurora kinase inhibitor that is currently in clinical trials in patients with advanced solid tumors. This communication describes the synthesis of prodrug derivatives of 1 with improved aqueous solubility profiles. In particular, phosphonooxymethyl-derived prodrug 2g has significantly enhanced solubility and is converted to the biologically active parent (1) following iv as well as po administration to rodents.
View Article and Find Full Text PDF