Publications by authors named "Erli Niu"

We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear.

View Article and Find Full Text PDF

Olive leaves are rich in phenolic compounds. This study explored the chemical profiles and contents of free phenolics (FPs) and bound phenolics (BPs) in olive leaves, and further investigated and compared the antioxidant properties of FPs and BPs using chemical assays, cellular antioxidant evaluation systems, and in vivo mouse models. The results showed that FPs and BPs have different phenolic profiles; 24 free and 14 bound phenolics were identified in FPs and BPs, respectively.

View Article and Find Full Text PDF

Olive suffers from cold damage when introduced to high-latitude regions from its native warm climes. Therefore, this study aims to improve the adaption of olive to climates in which it is cold for part of the year. The phenotype, physiological performance, nutrient content, and gene expression of olive leaves (from two widely planted cultivars) were examined after cultivation in normal and cold stress conditions.

View Article and Find Full Text PDF

Olive ( L.) is an ancient tree species in the Mediterranean, but the lack of knowledge about aluminum-resistant varieties limits its introduction to acidic soil. The objective of this study was to have a comprehensive evaluation of the response to aluminum stress in olive tree at germplasm, metabolome, and transcriptome levels.

View Article and Find Full Text PDF

Olive ( L.) is a world-famous woody oil tree and popular for redundant unsaturated fatty acids. Fatty acid desaturase (FAD) genes are responsible for fatty acid desaturation and stress regulation but have not yet been identified in olive at the whole genome level.

View Article and Find Full Text PDF

Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE).

View Article and Find Full Text PDF

Olives ( L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health.

View Article and Find Full Text PDF

Pentatricopeptide repeat (PPR) proteins encoded by nuclear genomes can bind to organellar RNA and are involved in the regulation of RNA metabolism. However, the functions of many PPR proteins remain unknown in plants, especially in polyploidy crops. Here, through a map-based cloning strategy and Clustered regularly interspaced short palindromic repeats/cas9 (CRISPR/cas9) gene editing technology, we cloned and verified an allotetraploid cotton immature fiber (im) mutant gene (GhImA) encoding a PPR protein in chromosome A03, that is associated with the non-fluffy fiber phenotype.

View Article and Find Full Text PDF

Olive ( L.) is a very important woody tree and favored by consumers because of the fruit's high-quality olive oil. Chloroplast genome analysis will provide insights into the chloroplast variation and genetic evolution of olives.

View Article and Find Full Text PDF

Olive ( L.) is a very important edible oil crop and has been cultivated for about 4,000 years in the Mediterranean area. Due to its nutritional and economic importance, researches on germplasm characterization received extensive attention.

View Article and Find Full Text PDF

Cotton is an important industrial crop worldwide and upland cotton ( L.) is most widely cultivated in the world. Due to ever-increasing water deficit, drought stress brings a major threat to cotton production.

View Article and Find Full Text PDF

Cellulose is a major component of plant cell walls and is necessary for plant morphogenesis and biomass. COBL (COBRA-Like) proteins have been shown to be key regulators in the orientation of cell expansion and cellulose crystallinity status. To clarify the role of a cotton COBL gene, GhCOBL9A, we conducted the ectopic expression and functional analysis in Arabidopsis.

View Article and Find Full Text PDF

Intron length polymorphisms (ILPs), a type of gene-based functional marker, could themselves be related to the particular traits. Here, we developed a genome-wide cotton ILPs based on orthologs annotation from two sequenced diploid species, A-genome Gossypium arboreum and D-genome G. raimondii.

View Article and Find Full Text PDF

Members of the CrRLK1L family, a subgroup of the receptor-like kinase (RLK) gene family, are thought to act as sensors for the integrity of the cell wall and regulators of polar elongation. To better understand the various functions in fiber development, we conducted genome-wide identification and characterization analyses of CrRLK1L family in cotton. Here 44, 40, and 79 CrRLK1L genes were identified from three cotton species: diploid G.

View Article and Find Full Text PDF

COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O.

View Article and Find Full Text PDF

Carotenoids are important accessory pigments in plants that are essential for photosynthesis. Phytoene synthase (PSY), a rate-controlling enzyme in the carotenoid biosynthesis pathway, has been widely characterized in rice, maize, and sorghum, but at present there are no reports describing this enzyme in cotton. In this study, GhPSY was identified as a candidate gene for the red plant phenotype via a combined strategy using: (1) molecular marker data for loci closely linked to R1; (2) the whole-genome scaffold sequence from Gossypium raimondii; (3) gene expression patterns in cotton accessions expressing the red plant and green plant phenotypes; and (4) the significant correlation between a single nucleotide polymorphisms (SNP) in GhPSY and leaf phenotypes of progeny in the (Sub16 × T586) F2 segregating population.

View Article and Find Full Text PDF