A method for axially symmetric fiber side pumping is proposed. The method is based on a coupling structure and a pump source that both utilize the axially symmetric geometry of a typical optical fiber. The coupling structure can be manufactured by adding material to and/or by removing material from the fiber.
View Article and Find Full Text PDFA simplified multiwavelength prototype of an axially symmetric diode laser device based on stacks made of single emitters has been made, and the performance of the device has been demonstrated experimentally. The results verify that kilowatt-level light power can be focused into a circular spot with a 1/e2 diameter of 360 microm, a focal length of 100 mm, and a numerical aperture of 0.24, thus producing an average power density in excess of 10 kW/mm2 and a brightness of 6x10(10) W m-2 sr-1.
View Article and Find Full Text PDFA compact stacking architecture for high-power diode-laser arrays is proposed and compared with traditional stacks. The objective of compact stacking is to achieve high brightness values without the use of microlenses. The calculated brightness for a compact stack is over 300 W mm(-2) sr(-1), which is approximately 40 times higher than that of a traditional stack made of similar laser emitters.
View Article and Find Full Text PDFA multiplexing method based on narrow diode-laser arrays (DLAs) in an axially symmetric configuration is described. The use of submillimeter narrow DLAs improves beam quality considerably in the slow-axis direction compared with typical 1-cm-wide DLAs. The axially symmetric geometry is advantageous for efficient spatial, wavelength, and polarization multiplexing.
View Article and Find Full Text PDF