Purpose: The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates.
View Article and Find Full Text PDFThe pathogenesis of age-related macular degeneration involves chronic oxidative stress, impaired degradation of membranous discs shed from photoreceptor outer segments and accumulation of lysosomal lipofuscin in retinal pigment epithelial (RPE) cells. It has been estimated that a major part of cellular proteolysis occurs in proteasomes, but the importance of proteasomes and the other proteolytic pathways including autophagy in RPE cells is poorly understood. Prior to proteolysis, heat shock proteins (Hsps), agents that function as molecular chaperones, attempt to refold misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates.
View Article and Find Full Text PDFSIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine tryptamide backbone were studied. This backbone has been developed in our group, and it is derived from a compound originally found by virtual screening. In addition, compounds with a smaller 3-phenylpropenoic acid tryptamide backbone were also included in the study.
View Article and Find Full Text PDFA series of N-(3-(4-hydroxyphenyl)-propenoyl)-amino acid tryptamides was based on a previously reported new SIRT2 inhibitor from our group, and it was designed to study if the molecular size of the compound could be reduced. The most potent compounds, N-(3-(4-hydroxyphenyl)-propenoyl)-2-aminoisobutyric acid tryptamide and N-(3-(4-hydroxyphenyl)-propenoyl)-L-alanine tryptamide, were equipotent, 30% smaller in molecular weight, and slightly more selective (SIRT2/SIRT1) than the parent compound.
View Article and Find Full Text PDFA series of N,N'-bisbenzylidenebenzene-1,4-diamine and N,N'-bisbenzylidenenaphthalene-1,4-diamine derivatives were synthesized as inhibitors for human sirtuin type 2 (SIRT2). The design of the new compounds was based on two earlier reported hits from molecular modeling and virtual screening. The most potent compound was N,N'-bis(2-hydroxybenzylidene)benzene-1,4-diamine, which was equipotent with the most potent hit compound and well-known SIRT2 inhibitor sirtinol.
View Article and Find Full Text PDFA successful virtual screening experiment of novel SIRT2 inhibitors is described. Four out of 11 experimentally tested compounds showed in vitro inhibitory activity toward SIRT2 in a micromolar level, resulting in an experimental hit ratio of 36%. Two of these compounds inhibited SIRT2 with IC50 (microM) values of 51 and 91; moreover, one of the new inhibitors was comprised of an entirely new SIRT2-inhibiting structural scaffold.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2003
The formation of Lewy bodies (LBs) and their relationship to other types of nigral inclusions associated with Parkinson disease (PD), such as pale bodies (PBs), remain poorly understood. Known constituents of LBs include alpha-synuclein (alphaS) and ubiquitin (Ub), providing windows to their morphogenesis. Additionally, p62/sequestosome 1 has been identified as a common component of neuropathological and hepatocytic inclusions.
View Article and Find Full Text PDF