Publications by authors named "Erkan Tuncay"

The purpose of this study was to evaluate the antibacterial effect of silver nanoparticles (AgNPs) against Enterococcus faecalis and compare it with different irrigation solutions. This study was performed using 64 dentin blocks. E.

View Article and Find Full Text PDF

Intracellular free Zn ([Zn]) is less than 1-nM in cardiomyocytes and its regulation is performed with Zn-transporters. However, the roles of Zn-transporters in cardiomyocytes are not defined exactly yet. Here, we aimed to examine the role of an overexpression and subcellular localization of a ZnT6 in insulin-resistance mimic H9c2 cardiomyoblasts (IR-cells; 50-μM palmitic acid for 24-h incubation).

View Article and Find Full Text PDF

Cardiac conduction abnormalities are disorders in metabolic syndrome (MetS), however, their mechanisms are unknown. Although ventricular arrhythmia reflects the changes in QT-interval of electrocardiograms associated with the changes in cardiomyocyte action potential durations (APDs), recent studies emphasize role of intercellular crosstalk between cardiomyocytes and nonmyocytes via passive (electrotonic)-conduction. Therefore, considering the possible increase in intercellular interactions of nonmyocytes with cardiomyocytes, we hypothesized an early-cardiac-remodeling characterized by short QT-interval via contributions and modulations of changes by nonmyocytes to the ventricular APs in an early-stage MetS hearts.

View Article and Find Full Text PDF

Background: Cellular free Zn concentrations ([Zn]) are primarily coordinated by Zn-transporters, although their roles are not well established in cardiomyocytes. Since we previously showed the important contribution of a Zn-transporter ZnT7 to [Zn] regulation in hyperglycemic cardiomyocytes, here, we aimed to examine a possible regulatory role of ZnT7 not only on [Zn] but also both the mitochondrial-free Zn and/or Ca in cardiomyocytes, focusing on the contribution of its overexpression to the mitochondrial function.

Methods: We mimicked either hyperinsulinemia (by 50-μM palmitic acid, PA-cells, for 24-h) or overexpressed ZnT7 (ZnT7OE-cells) in H9c2 cardiomyoblasts.

View Article and Find Full Text PDF

Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts.

View Article and Find Full Text PDF

Coronavirus Disease-19 (COVID-19) is a highly contagious infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development of rapid antigen tests has contributed to easing the burden on healthcare and lifting restrictions by detecting infected individuals to help prevent further transmission of the virus. We developed a state-of-art rapid antigen testing system, named DIAGNOVIR, based on immune-fluorescence analysis, which can process and give the results in a minute.

View Article and Find Full Text PDF

Sirtuins are NAD-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K (K) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells.

View Article and Find Full Text PDF

Tachycardia is characterized by high beating rates that can lead to life-threatening fibrillations. Mutations in several ion-channel genes were implicated with tachycardia; however, the complex genetic contributors and their modes of action are still unclear. Here, we investigated the influence of an SCN5A gene variant on tachycardia phenotype by deriving patient-specific iPSCs and cardiomyocytes (iPSC-CM).

View Article and Find Full Text PDF

Recent studies discuss the evidence of lesser degrees of hyperglycemia contribution to cardiovascular disease (CVD) than impaired glucose tolerance. Indeed, the biggest risk for CVD seems to shift to glucose intolerance in humans with insulin resistance. Although there is a connection between abnormal insulin signaling and heart dysfunction in diabetics, there is also a relation between cardiac insulin resistance and aging heart failure (HF).

View Article and Find Full Text PDF

Fibroblasts of the gingiva play a key role in oral wound healing in diabetes. In this study, effects of astaxanthin (ASTX), a xanthophyll carotenoid, were tested on gingival fibroblasts in a wound healing assay in vitro. The aim of this study was to determine whether ASTX can recover delayed wound healing or not when oxidative stress is elevated by high glucose exposure.

View Article and Find Full Text PDF

Purpose: Metabolic syndrome (MetS) became a tremendous public health burden in the last decades. Store-operated calcium entry (SOCE) is a unique mechanism that causes a calcium influx, which is triggered by calcium store depletion. MetS-induced alterations in cardiac calcium signaling, especially in SOCE are still unclear.

View Article and Find Full Text PDF

Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (I ) to the aging-related remodeling of the heart as well as the role of insulin treatment on I in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed I .

View Article and Find Full Text PDF

The pleiotropic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on the heart have been recognised in obese or diabetic patients. However, little is known regarding the molecular mechanisms of these agonists in cardioprotective actions under metabolic disturbances. We evaluated the effects of GLP-1R agonist liraglutide treatment on left ventricular cardiomyocytes from high-carbohydrate induced metabolic syndrome rats (MetS rats), characterised with insulin resistance and cardiac dysfunction with a long-QT.

View Article and Find Full Text PDF

The matrix metalloproteinases (MMPs) contribute to matrix remodeling in diabetes via tissue degradation; however, their contributions can be different depending on the pathology. For instance, MMPs are elevated in acute stress hyperglycemia, whereas they can be degraded in chronic hyperglycemia. Since studies emphasize the possible cardioprotective effect of ticagrelor (Tica) beyond its antiplatelet action, we aimed to examine whether Tica treatment can reverse the depressed heart function of metabolic syndrome (MetS) rats via affecting the expression levels of MMPs.

View Article and Find Full Text PDF

Background: Diabetic patients have prolonged cardiac repolarization and higher risk of arrhythmia. Besides, diabetes activates the innate immune system, resulting in higher levels of plasmatic cytokines, which are described to prolong ventricular repolarization.

Methods: We characterize a metabolic model of type 2 diabetes (T2D) with prolonged cardiac repolarization.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)-mitochondria (Mit) miscommunication.

View Article and Find Full Text PDF

An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn-homeostasis and responsible Zn-transporters associated with the Zn-homeostasis and Zn-signaling.

View Article and Find Full Text PDF

The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age-associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co-transporter gene (SGLT2) in disrupted cellular Ca -homeostasis, and mitochondrial dysfunction in age-associated cardiac dysfunction. In contrast to younger rats (6-month of age), older rats (24-month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities.

View Article and Find Full Text PDF

The death prevalence from cardiovascular disease is significantly high in elderly-populations, while mitochondrial-aging plays an important in abnormal function of vital organs through high mitochondrial ROS production. Mitochondria have a unique mode of action by providing ATP production and modulating the cytosolic Ca-signaling and maintain the redox status of cardiomyocytes. There is an aging-associated impairment in oxidative phosphorylation which causes a marked dysregulation of mitochondrial biogenesis.

View Article and Find Full Text PDF

Ticagrelor, a PY-receptor inhibitor, and a non-thienopyridine agent are used to treat diabetic patients via its effects on off-target mechanisms. However, the exact sub-cellular mechanisms by which ticagrelor exerts those effects remains to be elucidated. Accordingly, the present study aimed to examine whether ticagrelor influences directly the cardiomyocytes function under insulin resistance through affecting mitochondria-sarco(endo)plasmic reticulum (SER) cross-talk.

View Article and Find Full Text PDF

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation.

View Article and Find Full Text PDF

Excitation-contraction coupling in normal cardiac function is performed with well balanced and coordinated functioning but with complex dynamic interactions between functionally connected membrane ionic currents. However, their genomic investigations provide essential information on the regulation of diseases by their transcripts. Therefore, we examined the gene expression levels of the most important voltage-gated ionic channels such as Na-channels (SCN5A), Ca-channels (CACNA1C and CACNA1H), and K-channels, including transient outward (KCND2, KCNA2, KCNA5, KCNA8), inward rectifier (KCNJ2, KCNJ12, KCNJ4), and delayed rectifier (KCNB1) in left ventricular tissues from either ischemic or dilated cardiomyopathy (ICM or DCM).

View Article and Find Full Text PDF

Aging is an important risk factor for cardiac dysfunction. Heart during aging exhibits a depressed mechanical activity, at least, through mitochondria-originated increases in ROS. Previously, we also have shown a close relationship between increased ROS and cellular intracellular free Zn ([Zn]) in cardiomyocytes under pathological conditions as well as the contribution of some re-expressed levels of Zn-transporters for redistribution of [Zn] among suborganelles.

View Article and Find Full Text PDF