Publications by authors named "Erkan Azizoglu"

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice.

View Article and Find Full Text PDF

Wetlands are crucial habitats for both migrant and resident bird assemblages. The distribution and habitat preferences of birds in aquatic ecosystems are significantly influenced by environmental and ecological factors that critically impact the relevant habitats. In order to reveal the distribution and habitat preferences of the birds, many statistical models and methodologies are employed in ecology and conservation biology.

View Article and Find Full Text PDF

Dissolving microneedle (MN) patches are usually formulated with a blend of drug and excipients added for mechanical strength and drug stabilization. In this study, we developed MNs made of pure drug to maximize drug loading capacity. MN patches were fabricated for transdermal delivery of montelukast sodium (MS) which is used to treat asthma and allergic rhinitis.

View Article and Find Full Text PDF

The powerful and intriguing idea that drives the emerging technology of microneedles-shrinking the standard needle to a micron scale-has fostered an entire field of microneedle study and subsequent exponential growth in research and product development. Originally enabled by microfabrication tools derived from the microelectronic industry, microneedles are now produced through a number of methods in a variety of forms including solid, coated, dissolvable, and hollow microneedles. They are used to deliver a broad spectrum of molecules, including small molecules, biomolecules, and vaccines, as well as various forms of energy into the skin, eye, and other tissues.

View Article and Find Full Text PDF

The main objectives of this work were to develop and characterize new 3D printing filaments and print them directly onto a packaging material. Different blends of polymers were tested to achieve low-temperature printing filaments, which are flexible and durable to be wound onto spools. The mechanical properties of filaments were compared with commercial filaments and evaluated by bending tests.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic and relapsing skin disease with severe eczematous lesions. Long-term topical corticosteroid treatment can induce skin atrophy, hypopigmentation and transepidermal water loss (TEWL) increase. A new treatment approach was needed to reduce the risk by dermal targeting.

View Article and Find Full Text PDF

Poly(lactide-co-glycolide) (PLGA) and lecithin/chitosan (LC) nanoparticles were prepared to evaluate the difference in the behavior upon administration on skin, for steroidal treatment. For this purpose, betamethasone-17-valerate (BMV)-loaded nanoparticles with a narrow size distribution and high entrapment efficiency were prepared. Permeation studies showed that both polymeric nanoparticles enhanced the amount of BMV in epidermis, which is the target site of topical steroidal treatment, when compared with commercial formulation.

View Article and Find Full Text PDF

The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique.

View Article and Find Full Text PDF