Publications by authors named "Erk K"

Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity.

View Article and Find Full Text PDF

Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions.

View Article and Find Full Text PDF

While significant progress has been made in the modeling and simulation of uniform fiber suspensions, no existing model has been validated for industrially-relevant concentrated suspensions containing fibers of multiple aspect ratios. In the present work, we investigate bi-disperse suspensions with two fiber populations in varying aspect ratios in a steady shear flow using direct numerical simulations. Moreover, we measure the suspension viscosity by creating a controlled length bidispersity for nylon fibers suspended in a Newtonian fluid.

View Article and Find Full Text PDF

Concentrated suspensions of particles at volume fractions () ≥ 0.5 often exhibit complex rheological behavior, transitioning from shear thinning to shear thickening as the shear stress or shear rate is increased. These suspensions can be extruded to form 3D structures, with non-adsorbing polymers often added as rheology modifiers to improve printability.

View Article and Find Full Text PDF

Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings.

View Article and Find Full Text PDF

Spontaneous emulsion behavior has been difficult to predict and could be influenced by many variables including salinity, temperature, and chemical composition of the oil and surfactant. In this work, the hydrophilic-lipophilic difference (HLD) framework was used to predict the formation of spontaneous emulsions using a mixture of Span-80 and SLES surfactants. The spontaneity and emulsion behavior of different systems were modeled by estimating the HLD.

View Article and Find Full Text PDF

The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100-300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner.

View Article and Find Full Text PDF

The movement of solid material into and between unit operations within a biorefinery is a bottleneck in reaching design capacity, with formation of biomass slurries needed to introduce feedstock. Corn stover slurries have been achieved from dilute acid, pretreated materials resulting in slurry concentrations of up to about 150 g/L, above which flowability is compromised. We report a new strategy to liquefy corn stover at higher solids concentration (300 g/L) by initially cooking it with the enzyme mimetic maleic acid at 40 mM and 150 °C.

View Article and Find Full Text PDF

Spontaneous emulsification of toluene with nonylphenol polyethoxylate (NPE) and sodium dodecylbenzenesulfonate (SDBS) surfactants in saltwater environments was studied. NaCl promoted the spontaneous emulsification of an otherwise non-spontaneous SDBS-toluene system. Dynamic light scattering and turbidity indicated that spontaneity increased with NaCl concentration.

View Article and Find Full Text PDF

CO and O gas permeability are paramount concerns in food packaging. Here, the permeability of cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) coatings was explored as it relates to varied CNC content. Specifically, this work focuses on the role of PVA in rheology and barrier performance of the CNC films.

View Article and Find Full Text PDF

A comprehensive review of the literature shows that enzyme hydrolysis efficiency decreases with increased solids loadings at constant enzyme:cellulose ratios for pretreated lignocellulosic substrates. In seeking a mechanistic explanation for this phenomenon, we found that a nitrogen atmosphere enhances enzyme hydrolysis and minimizes the decrease in glucose yields as solids loadings are increased in an agitated bioreactor. For liquid hot water pretreated corn stover, at solids loadings of both 100 and 200 g/L and hydrolyzed for 72 hr in a 1 L bioreactor at pH 5.

View Article and Find Full Text PDF

Spontaneous emulsification of toluene, xylenes, cyclohexane, and mineral oil in a nonionic nonylphenol polyethoxylate surfactant solution was investigated by visual observations coupled with dynamic light scatting measurements and interfacial tensiometry. For water-soluble oils, nanoscale emulsions formed spontaneously by diffusion of oil molecules into the aqueous surfactant solutions and subsequent swelling of surfactant micelles with oil. Micelle swelling rates were quantified to assess system spontaneity, revealing that oil solubility in water was directly correlated to the spontaneity of the emulsion (toluene > xylenes > cyclohexane).

View Article and Find Full Text PDF

The overall conditions for the treatment of patients with psychiatric disorders have changed and place new demands on therapy concepts and procedures. This concerns both the legal conditions of the treatment as well as the content and economic conditions for a patient-oriented diagnostic work-up and therapy. The Central Institute for Mental Health (CIMH) in Mannheim is currently implementing a track concept that takes these changes into account and aims to overcome sectoral boundaries in favor of treatment continuity.

View Article and Find Full Text PDF

During the past decades, important progress was made in the treatment of patients with mental disorders. Nevertheless, the guideline-based treatment still represents a significant challenge that must take into account novel diagnostic and therapeutic possibilities as well as recent social development and the economic framework. Therefore, there is a need for further improvement of care in inpatient, day-care and outpatient hospital units.

View Article and Find Full Text PDF

Modern psychiatry needs to implement novel mental health care systems in order to address recent developments in diagnostics and treatment of psychiatric patients. In this context, it is necessary to take into account recent ethical and certain legal aspects which explicitly seek to reduce coercive treatment. The so-called "track-unit" is a promising strategy in order to achieve these goals.

View Article and Find Full Text PDF

Through several complementary experiments, an investigation of the bulk and interfacial flows that emerged during the coalescence of two water-in-oil droplets with asymmetric compositional properties was performed. By adding surfactant to one of the coalescing droplets and leaving the other surfactant-free, a strong interfacial tension gradient (i.e.

View Article and Find Full Text PDF

This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel's swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum.

View Article and Find Full Text PDF

Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side-chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle-polymer interactions.

View Article and Find Full Text PDF

The fracture-healing behavior of model physically associating triblock copolymer gels was investigated with experiments coupling shear rheometry and particle tracking flow visualization. Fractured gels were allowed to rest for specific time durations, and the extent of strength recovered during the resting time was quantified as a function of temperature (20-28 °C) and gel concentration (5-6 vol %). Measured times for full strength recovery were an order of magnitude greater than characteristic relaxation times of the system.

View Article and Find Full Text PDF

The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (Gaviscon Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1-1.

View Article and Find Full Text PDF

Background: Progression of diabetes-associated periodontal destruction and the roles of advanced glycation end products (AGEs) are investigated.

Methods: Diabetes was induced by streptozocotin injection, and periodontitis was induced via silk ligature placement with Porphyromonas gingivalis lipopolysaccharide injection in 64 Sprague-Dawley rats for 7 to 21 days. The quality of alveolar bone and attachment loss (AL) were measured by microcomputed tomography and histology.

View Article and Find Full Text PDF

A new measurement method is suggested that is capable of probing the shear and dilational interfacial rheological responses of small droplets, those of size comparable to real emulsion applications. Freely suspended aqueous droplets containing surfactant and non-surface-active tracer particles are transported through a rectangular microchannel by the plane Poiseuille flow of the continuous oil phase. Optical microscopy and high-speed imaging record the shape and internal circulation dynamics of the droplets.

View Article and Find Full Text PDF

Model physically associating gels deformed in shear over a wide range of reduced rates displayed evidence of strain localization. The nonlinear stress responses and inhomogeneous velocity profiles observed during shear rheometry coupled with particle tracking velocimetry were associated with the occurrence of rate-dependent banding and fracture-like responses in the gel. Scaling law analysis from traditional sliding friction studies suggests that, at the molecular level, deformation is confined to a shear zone with thickness comparable to the mesh size of the gel, the smallest structurally relevant length scale in the gel.

View Article and Find Full Text PDF

Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by shear rheometry.

View Article and Find Full Text PDF