Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Employing integrative transcriptomic analysis and machine-learning approaches, we aimed to decipher disease-related signature genes to find suitable sets of biomarkers.
View Article and Find Full Text PDFBackground: Nickel-induced allergic contact dermatitis (nACD) remains a major occupational skin disorder, significantly impacting the quality of life of suffering patients. Complex cellular compositional changes and associated immunological pathways are partly resolved in humans; thus, the impact of nACD on human skin needs to be further elucidated.
Methods: To decipher involved immunological players and pathways, human skin biopsies were taken at 0, 2, 48, and 96 hours after nickel patch test in six nickel-allergic patients.