Publications by authors named "Erina Fujiwara-Nagata"

Unlabelled: With the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu () infected with , which causes bacterial cold-water disease worldwide.

View Article and Find Full Text PDF

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species.

View Article and Find Full Text PDF

Rainbow trout fry syndrome (RTFS) and bacterial coldwater disease (BCWD) is a globally distributed freshwater fish disease caused by Flavobacterium psychrophilum. In spite of its importance, an effective vaccine is not still available. Manipulation of the microbiome of skin, which is a primary infection gate for pathogens, could be a novel countermeasure.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a significant bacterial pathogen affecting salmonid fish, specifically rainbow trout fry syndrome and bacterial cold-water disease, and analyzes its genomic diversity across 41 genomes, including new isolates.
  • Results indicate that while the bacterial species has limited genomic diversity—only about 0.3% nucleotide divergence—the core genome contains around 80% of genes consistently present across different strains.
  • Key evolutionary features include high levels of recombination, with average tract lengths of about 4.0 Kbp, and a common ancestor traced back to the 19th century, aligning with the spread of rainbow trout farming globally.
View Article and Find Full Text PDF
Article Synopsis
  • A devastating bacterial pathogen affects freshwater-reared salmonids globally, and while serological diversity among strains has been noted, the specific molecular factors are still unclear.
  • By analyzing complete genomes and applying a serotyping method, researchers identified important molecular determinants across 34 strains, leading to the creation of a multiplex PCR-based serotyping scheme.
  • This new scheme, tested on 244 bacterial isolates, showed a strong link between serotype and fish species, proving useful for disease monitoring, enhancing disease resistance in salmonids, and aiding vaccine development.
View Article and Find Full Text PDF

Phosphorothioate modification of DNA and the corresponding DNA degradation (Dnd) phenotype that occurs during gel electrophoresis are caused by dnd genes. Although widely distributed among Bacteria and Archaea, dnd genes have been found in only very few, taxonomically unrelated, bacterial species so far. Here, we report the presence of dnd genes and their associated Dnd phenotype in two Flavobacterium species.

View Article and Find Full Text PDF

The bacterium Flavobacterium psychrophilum is a serious problem for salmonid farming worldwide. This study investigates by multilocus sequence typing (MLST) the population structure of this pathogen in Japan where it is also a major concern for ayu, a popular game fish related to salmoniforms. A total of 34 isolates collected across the country and 80 isolates sampled in a single model river by electrofishing were genotyped.

View Article and Find Full Text PDF

Vibrio anguillarum kills various kinds of fish over salinities ranging from seawater to freshwater. In this study, we investigated the role of Na(+) in V. anguillarum, especially under energy-depleted conditions such as in natural seawater.

View Article and Find Full Text PDF

The activity of membrane-bound NADH oxidase of Vibrio anguillarum M93 (serotype J-O-1), which causes vibriosis in freshwater area was activated by Na(+) in the same manner as other marine Vibrios. However, in addition to Na(+), K(+) was also found to positively enhance the NADH oxidase activity of strain M93. This tendency has not been recognized in other marine Vibrios.

View Article and Find Full Text PDF