Publications by authors named "Erin Y Chang"

Fat grafting can reduce radiation-induced fibrosis. Improved outcomes are found when fat grafts are enriched with adipose-derived stromal cells (ASCs), implicating ASCs as key drivers of soft tissue regeneration. We have identified a subpopulation of ASCs positive for CD74 with enhanced antifibrotic effects.

View Article and Find Full Text PDF

In the version of this article initially published, '+' and '-' labels were missing from the graph keys at the bottom of Fig. 8d. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Accumulation of trimethylation of histone H3 at lysine 4 (H3K4me3) on immune-related gene promoters underlies robust transcription during trained immunity. However, the molecular basis for this remains unknown. Here we show three-dimensional chromatin topology enables immune genes to engage in chromosomal contacts with a subset of long noncoding RNAs (lncRNAs) we have defined as immune gene-priming lncRNAs (IPLs).

View Article and Find Full Text PDF

Royal jelly is the queen-maker for the honey bee Apis mellifera, and has cross-species effects on longevity, fertility, and regeneration in mammals. Despite this knowledge, how royal jelly or its components exert their myriad effects has remained poorly understood. Using mouse embryonic stem cells as a platform, here we report that through its major protein component Royalactin, royal jelly can maintain pluripotency by activating a ground-state pluripotency-like gene network.

View Article and Find Full Text PDF

Recent studies have clearly shown that long-range, three-dimensional chromatin looping interactions play a significant role in the regulation of gene expression, but whether looping is responsible for or a result of alterations in gene expression is still unknown. Until recently, how chromatin looping affects the regulation of gene activity and cellular function has been relatively ambiguous, and limitations in existing methods to manipulate these structures prevented in-depth exploration of these interactions. To resolve this uncertainty, we engineered a method for selective and reversible chromatin loop re-organization using CRISPR-dCas9 (CLOuD9).

View Article and Find Full Text PDF