Publications by authors named "Erin Sparks"

Graft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown. We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using viability stains.

View Article and Find Full Text PDF

Plants have a remarkable ability to generate organs with a different identity to the parent organ, called 'trans-organogenesis'. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots.

View Article and Find Full Text PDF

Maize brace roots develop from aboveground stem nodes in both upright and vertically displaced stalks. The cues that trigger brace root development after displacement are unknown. Possibilities include disturbance of the belowground roots, gravity, moisture, physical interaction, or node anatomical changes.

View Article and Find Full Text PDF

Graft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown.We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using trypan blue and TUNEL assays.

View Article and Find Full Text PDF

Brace roots are common in large C Poaceae species, such as maize and sorghum. However, in other species, these roots were either never reported, or the existence of the trait was neglected. Here we report the presence of brace roots in a high-performing L.

View Article and Find Full Text PDF

Under all environments, roots are important for plant anchorage and acquiring water and nutrients. However, there is a knowledge gap regarding how root architecture contributes to stress tolerance in a changing climate. Two closely related plant species, maize and sorghum, have distinct root system architectures and different levels of stress tolerance, making comparative analysis between these two species an ideal approach to resolve this knowledge gap.

View Article and Find Full Text PDF
Article Synopsis
  • - The Maize GxE project, part of the Genomes to Fields Initiative, studies how different genetic types (genotypes) of maize interact with varying environmental conditions to improve resource use and predictability in crop performance.
  • - Data collected from 30 locations in the US and one in Germany during 2020-2021 include phenotypic details, soil and climate measurements, and other relevant metadata, all of which are being made publicly accessible.
  • - Collaborators at each site collected and submitted data, which was then verified and compiled by a coordination team, ensuring accuracy before releasing a minimally filtered version to the public.
View Article and Find Full Text PDF

Objectives: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data.

Data Description: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022.

View Article and Find Full Text PDF

Plants must be able to sense and respond to mechanical stresses encountered throughout their lifespan. The MscS-Like (MSL) family of mechanosensitive ion channels is one mechanism to perceive mechanical stresses. In maize, brace roots emerge from stem nodes above the soil and some remain aerial while some grow into the soil.

View Article and Find Full Text PDF

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer.

View Article and Find Full Text PDF

Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown.

View Article and Find Full Text PDF

Unmanned ground vehicles can capture a sub-canopy perspective for plant phenotyping, but their design and construction can be a challenge for scientists unfamiliar with robotics. Here we describe the necessary components and provide guidelines for designing and constructing an autonomous ground robot that can be used for plant phenotyping.

View Article and Find Full Text PDF

Background And Aims: Root lodging is responsible for significant crop losses worldwide. During root lodging, roots fail by breaking, buckling or pulling out of the ground. In maize, above-ground roots, called brace roots, have been shown to reduce susceptibility to root lodging.

View Article and Find Full Text PDF

Plant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation.

View Article and Find Full Text PDF

Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the root as a function of time.

View Article and Find Full Text PDF

Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time.

View Article and Find Full Text PDF

Mechanical failure, known as lodging, negatively impacts yield and grain quality in crops. Limiting crop loss from lodging requires an understanding of the plant traits that contribute to lodging-resistance. In maize, specialized aerial brace roots are reported to reduce root lodging.

View Article and Find Full Text PDF

Plant mechanical failure, also known as lodging, is the cause of significant and unpredictable yield losses in cereal crops. Lodging occurs in two distinct failure modes-stalk lodging and root lodging. Despite the prevalence and detrimental impact of lodging on crop yields, there is little consensus on how to phenotype plants in the field for lodging resistance and thus breed for mechanically resilient plants.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding plant growth requires collecting quantitative data across various timeframes and scales, which recent imaging techniques are increasingly facilitating.
  • Modern imaging methodologies allow for detailed analysis of plant development, capturing everything from molecular activity to physical traits in both lab and field environments, often processing multiple samples at once.
  • The integration of high-throughput imaging with extensive molecular data will enhance the capability for systems-level modeling, paving the way for rapid advancements in functional genomics related to plant growth.
View Article and Find Full Text PDF

Changes in gene regulation during differentiation are governed by networks of transcription factors. The Arabidopsis root endodermis is a tractable model to address how transcription factors contribute to differentiation. We used a bottom-up approach to understand the extent to which transcription factors that are required for endodermis differentiation can confer endodermis identity to a non-native cell type.

View Article and Find Full Text PDF

The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources.

View Article and Find Full Text PDF

The development of multicellular organisms relies on the precise regulation of cellular differentiation. As such, there has been significant effort invested to understand the process through which an immature cell undergoes differentiation. In this review, we highlight key discoveries and advances that have contributed to our understanding of the transcriptional networks underlying Arabidopsis root endodermal differentiation.

View Article and Find Full Text PDF

Spatiotemporal transcriptome profiles from specific tissues are critical for understanding plant development and responses to the environment. One approach to isolate specific tissues is fluorescence-activated cell sorting (FACS). In this chapter, we outline methods for the FACS isolation of root protoplasts followed by transcriptome profiling using RNA sequencing.

View Article and Find Full Text PDF

Young children's willingness to share with others is selective, and is affected by their level of affiliation with the recipients of their generosity. We explored affiliation's impact on sharing behavior with two experiments comparing the effects of two distinct affiliative cues-minimal group membership and shared interests. Children (4- to 6-year-olds) completed a resource allocation task, making forced-choice decisions as to how to distribute stickers between themselves and others.

View Article and Find Full Text PDF