Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring.
View Article and Find Full Text PDFUltraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin.
View Article and Find Full Text PDFThe incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation.
View Article and Find Full Text PDFWhile the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decode the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization.
View Article and Find Full Text PDFMaintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs).
View Article and Find Full Text PDFProgesterone is used for hormone replacement therapy through various routes of administration. This study was conducted to (a) evaluate the stability of progesterone in a proprietary anhydrous permeation-enhancing base (APEB) and the efficiency of its skin permeation, and (b) determine the appropriateness of mass spectrometry as a method of analysis for permeated progesterone. Using a proven stability-indicating ultra-performance liquid chromatographic method, the compounded hormone (100 mg progesterone/g APEB gel) was determined to be physically and chemically stable at room temperature for six months.
View Article and Find Full Text PDFMost platforms used for the molecular reconstruction of the tumor-immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell-cell or cell-extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics).
View Article and Find Full Text PDFBackground: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2023
Background: Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core.
View Article and Find Full Text PDFPost-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers.
View Article and Find Full Text PDFIntra-tumor heterogeneity (ITH) of human tumors is important for tumor progression, treatment response, and drug resistance. However, the spatial distribution of ITH remains incompletely understood. Here, we present spatial analysis of ITH in lung adenocarcinomas from 147 patients using multi-region mass spectrometry of >5,000 regions, single-cell copy number sequencing of ~2,000 single cells, and cyclic immunofluorescence of >10 million cells.
View Article and Find Full Text PDFLactate accumulates to a significant amount in glioblastomas (GBMs), the most common primary malignant brain tumor with an unfavorable prognosis. However, it remains unclear whether lactate is metabolized by GBMs. Here, we demonstrated that lactate rescued patient-derived xenograft (PDX) GBM cells from nutrient-deprivation-mediated cell death.
View Article and Find Full Text PDFTraditional histological tissue-based diagnostics have been slow and often require large numbers of sections to interrogate for several different proteins with immunohistochemical stains. Often, due to small biopsy size, there is not sufficient material available to carry out all the desired tests on a patient sample. Mass Spectrometry Imaging (MSI) enables the simultaneous detection of hundreds to thousands of analytes from a single tissue section.
View Article and Find Full Text PDFMass spectrometry imaging provides a powerful approach for the direct analysis and spatial visualization of molecules in tissue sections. Using matrix-assisted laser desorption/ionization mass spectrometry, intact protein imaging has been widely investigated for biomarker analysis and diagnosis in a variety of tissue types and diseases. However, blood-rich or highly vascular tissues present a challenge in molecular imaging due to the high ionization efficiency of hemoglobin, which leads to ion suppression of endogenous proteins.
View Article and Find Full Text PDFPrimary liver cancer, or hepatocellular carcinoma (HCC), is a major worldwide cause of death from carcinoma. Most patients are not candidates for surgery and medical therapies, including new immunotherapies, have not shown major improvements since the modest benefit seen with the introduction of sorafenib over a decade ago. Locoregional therapies for intermediate stage disease are not curative but provide some benefit.
View Article and Find Full Text PDFBackground: Differentiation of lymphocytic-plasmacytic enteropathy (LPE) from small cell lymphoma (SCL) in cats can be challenging.
Hypothesis/objective: Histology-guided mass spectrometry (HGMS) is a suitable method for the differentiation of LPE from SCL in cats.
Animals: Forty-one cats with LPE and 52 cats with SCL.
Purpose: Distinguishing benign nevi from malignant melanoma using current histopathological criteria may be very challenging and is one the most difficult areas in dermatopathology. The goal of this study was to identify proteomic differences, which would more reliably differentiate between benign and malignant melanocytic lesions.
Methods: We performed histolpathology - guided mass spectrometry (HGMS) profiling analysis on formalin-fixed, paraffin embedded tissue samples to identify differences at the proteomic level between different types of benign nevi and melanomas.
Proteomics Clin Appl
January 2019
Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus.
View Article and Find Full Text PDFHistopathological interpretation of proliferative nodules occurring in association with congenital melanocytic nevi can be very challenging due to their similarities with congenital malignant melanoma and malignant melanoma arising in association with congenital nevi. We hereby report a diagnostically challenging case of congenital melanocytic nevus with proliferative nodules and ulcerations, which was originally misdiagnosed as congenital malignant melanoma. Subsequent histopathological examination in consultation by one of the authors (R.
View Article and Find Full Text PDFBackground: Previously, using imaging mass spectrometry (IMS), we discovered proteomic differences between Spitz nevi and Spitzoid melanomas.
Objective: We sought to determine whether IMS can assist in the classification of diagnostically challenging atypical Spitzoid neoplasms (ASN), to compare and correlate the IMS and histopathological diagnoses with clinical behavior.
Methods: We conducted a retrospective collaborative study involving centers from 11 countries and 11 US institutions analyzing 102 ASNs by IMS.
Phenotypic differences between otherwise similar tumors arising from different gynecologic locations may be highly significant in understanding the underlying driver molecular events at each site and may potentially offer insights into differential responses to treatment. In this study, the authors sought to identify and quantify phenotypic differences between ovarian clear cell carcinoma (OCCC) and endometrial clear cell carcinoma (ECCC) using a proteomic approach. Tissue microarrays were constructed from tumor samples of 108 patients (54 ECCCs and 54 OCCCs).
View Article and Find Full Text PDFA 37-year-old pregnant woman presented with a 2-cm irregular reddish nodule on her left upper arm during pregnancy. A biopsy from the lesion showed a 2.2-mm thick malignant melanoma with intravascular invasion, 25 mitosis/mm(2) and no ulceration.
View Article and Find Full Text PDFBackground: The 2013 Children's Oncology Group (COG) blueprint for renal tumor research challenges investigators to develop new, risk-specific biological therapies for unfavorable histology and higher-risk Wilms tumor (WT) in an effort to close a persistent survival gap and to reduce treatment toxicities. As an initial response to this call from the COG, we used imaging mass spectrometry to determine peptide profiles of WT associated with adverse outcomes.
Materials And Methods: We created a WT tissue microarray containing 2-mm punches of formalin-fixed, paraffin-embedded specimens archived from 48 sequentially treated WT patients at our institutions.