Publications by authors named "Erin S Boyle"

This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition.

View Article and Find Full Text PDF

This article describes the new multidimensional spectroscopy technique triply resonant sum frequency spectroscopy, a four-wave mixing technique sharing advantages of both 2D-IR and resonance Raman experiments. In this technique, lasers with three independent frequencies interact coherently within a sample and generate an output frequency at their triple summation. The output intensity depends on coupled electronic and vibrational resonances in the sample.

View Article and Find Full Text PDF

In this paper we present a new multiresonant coherent multidimensional spectroscopy (CMDS) technique employing a pathway that is both fully coherent and necessarily unique. This technique is based on a Triple Sum Frequency (TSF) coherence pathway with three excitation pulses having frequencies ω1, ω2, and ω3 and the phase matching condition k→1 + k→2 + k→3. Two-dimensional spectra are created by independently tuning the ω1 and ω2 pulses across vibrational resonances while monitoring the intensity of a visible output beam created by a Raman transition induced by the ω3 pulse.

View Article and Find Full Text PDF

Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors.

View Article and Find Full Text PDF

The spectral dependencies of absorption and fluorescence emission (emission maxima (lamdamax), quantum yields (phi), and mean lifetimes (taum)) were acquired for a commercial lignin, Suwannee River humic (SRHA) and fulvic (SRFA) acids, and a series solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts). These parameters were compared with the relative average size and total lignin phenol content (TLP). TLP was strongly correlated with absorption at 280 and 355 nm for the MAB extracts, SRHA, and SRFA.

View Article and Find Full Text PDF