New analytical functionality is demonstrated with an enclosed interface that joins a solid phase microextraction (SPME) device, a direct analysis in real time (DART) probe, and a high-resolution mass spectrometer. With a single 20 mm long SPME Arrow, the interface is able to perform five discrete DART analyses on different areas of the same fiber in 1 min of practical operation time. Three-fiber replicates for 15 runs total produce 15% or better center of variance (CV) values for both volatile headspace sampling and direct immersion sampling of a solvated analyte.
View Article and Find Full Text PDFThe structures of many membrane-bound proteins and polypeptides depend on the membrane potential. However, spectroscopically studying their structures under an applied field is challenging, because a potential is difficult to generate across more than a few bilayers. We study the voltage-dependent structures of the membrane-bound polypeptide, alamethicin, using a spectroelectrochemical cell coated with a rough, gold film to create surface plasmons.
View Article and Find Full Text PDFSurfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies.
View Article and Find Full Text PDFImmunosensors use antibodies to detect and quantify biomarkers of disease, though the sensors often lack structural information. We create a surface-sensitive two-dimensional infrared (2D IR) spectroscopic immunosensor for studying protein structures. We tether antibodies to a plasmonic surface, flow over a solution of amyloid proteins, and measure the 2D IR spectra.
View Article and Find Full Text PDFSpectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR 2D IR) spectroscopy, a method that combines localized surface plasmons with a reflection pump-probe geometry to achieve monolayer sensitivity. The method is demonstrated at 6 m with the amide I band of a model peptide, a cysteine terminated α-helical peptide tethered to a gold surface.
View Article and Find Full Text PDF