Publications by authors named "Erin Panczyk"

Investigating the structural heterogeneity of monoclonal antibodies is crucial to achieving optimal therapeutic outcomes. We show that tandem-trapped ion mobility spectrometry enables collision-induced unfolding measurements of subpopulations of a humanised IgGk NIST monoclonal antibody (NISTmAb). Our results indicate that differential glycosylation of NISTmAb does not modulate its conformational heterogeneity.

View Article and Find Full Text PDF

The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells.

View Article and Find Full Text PDF

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography.

View Article and Find Full Text PDF

"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar.

View Article and Find Full Text PDF

Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands.

View Article and Find Full Text PDF

We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap.

View Article and Find Full Text PDF

The use of submicrometer capillaries for nanoelectrospray ionization of native proteins and protein complexes effectively reduces the number of nonspecific salt adducts to biological molecules, therefore increasing the apparent resolution of a mass spectrometer without any further instrument modifications or increased ion activation. However, the increased interaction between proteins and the surface of the capillary has been shown to promote protein expansion and therefore loss of native structure. Here, we compare the effect of micrometer and submicrometer sized capillaries on the native structures of the protein complexes streptavidin, concanavalin A, and C-reactive protein under charge reducing conditions.

View Article and Find Full Text PDF

A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (/ 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer.

View Article and Find Full Text PDF