Mol Microbiol
June 2015
Multiple species within the Acinetobacter genus are nosocomial opportunistic pathogens of increasing relevance worldwide. Among the virulence factors utilized by these bacteria are the type IV pili and a protein O-glycosylation system. Glycosylation is mediated by O-oligosaccharyltransferases (O-OTases), enzymes that transfer the glycan from a lipid carrier to target proteins.
View Article and Find Full Text PDFUnlabelled: Acinetobacter baumannii is a Gram-negative, opportunistic pathogen. Recently, multiple A. baumannii genomes have been sequenced; these data have led to the identification of many genes predicted to encode proteins required for the biogenesis of type IV pili (TFP).
View Article and Find Full Text PDFType VI secretion systems (T6SS) are a class of macromolecular secretion machines that are utilized by a number of bacteria for inter-bacterial competition or to elicit responses in eukaryotic cells. Acinetobacter baumannii is an opportunistic pathogen that causes severe infections in humans. These infections, including pneumonia and bacteremia, are important, as they are often associated with hospitals and medical-settings where they disproportionally affect critically ill patients like those residing in intensive care units.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2012
The type IV pili of nontypeable Haemophilus influenzae (NTHi) are involved in twitching motility, adherence, competence and biofilm formation. They are potential virulence factors for this important human pathogen and are thus considered to be vaccine targets. To characterize these pili, an attempt to solve the atomic structure of the major pilin subunit PilA was initiated.
View Article and Find Full Text PDFWe previously demonstrated that one or more products of the genes in the pil and com gene clusters of the opportunistic human respiratory pathogen nontypeable Haemophilus influenzae (NTHI) are required for type IV pilus (Tfp) biogenesis and function. Here, we have now demonstrated that the pilABCD and comABCDEF gene clusters are operons and that the product of each gene is essential for normal pilus function. Mutants with nonpolar deletions in each of the 10 pil and com genes had an adherence defect when primary human airway cells were used as the target.
View Article and Find Full Text PDF