Background: This study had aimed to describe long-term decision regret, bowel dysfunction, and the overall quality of life in patients with diverticulitis, and to determine if elective colectomy was associated with these patient-reported outcome measures.
Methods: This mixed-methods, survey-based study was administered to a national cohort of patients in the United States with diverticulitis. We measured decision regret (Brehaut Decision Regret), bowel dysfunction (Low Anterior Resection Syndrome score), and the overall quality of life (EuroQol 5 Dimension) in this population.
Loss-of-function melanocortin 1 receptor (MC1R) polymorphisms are common in UV-sensitive fair-skinned individuals and are associated with blunted cAMP second messenger signalling and higher lifetime risk of melanoma because of diminished ability of melanocytes to cope with UV damage. cAMP signalling positions melanocytes to resist UV injury by upregulating synthesis of UV-blocking eumelanin pigment and by enhancing the repair of UV-induced DNA damage. cAMP enhances melanocyte nucleotide excision repair (NER), the genome maintenance pathway responsible for the removal of mutagenic UV photolesions, through cAMP-activated protein kinase (protein kinase A)-mediated phosphorylation of the ataxia telangiectasia-mutated and Rad3-related (ATR) protein on the S435 residue.
View Article and Find Full Text PDFLoss-of-function in melanocortin 1 receptor (MC1R), a G protein-coupled receptor that regulates signal transduction through cAMP and protein kinase A (PKA) in melanocytes, is a major inherited melanoma risk factor. Herein, we report a novel cAMP-mediated response for sensing and responding to UV-induced DNA damage regulated by A-kinase-anchoring protein 12 (AKAP12). AKAP12 is identified as a necessary participant in PKA-mediated phosphorylation of ataxia telangiectasia mutated and Rad3-related (ATR) at S435, a post-translational event required for cAMP-enhanced nucleotide excision repair (NER).
View Article and Find Full Text PDFThe melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3.
View Article and Find Full Text PDFKey Points: The endogenous molecular clock in skeletal muscle is necessary for maintenance of phenotype and function. Loss of Bmal1 solely from adult skeletal muscle (iMSBmal1(-/-) ) results in reductions in specific tension, increased oxidative fibre type and increased muscle fibrosis with no change in feeding or activity. Disruption of the molecular clock in adult skeletal muscle is sufficient to induce changes in skeletal muscle similar to those seen in the Bmal1 knockout mouse (Bmal1(-/-) ), a model of advanced ageing.
View Article and Find Full Text PDFThe melanocortin 1 receptor (MC1R), a GS-coupled receptor that signals through cAMP and protein kinase A (PKA), regulates pigmentation, adaptive tanning, and melanoma resistance. MC1R-cAMP signaling promotes PKA-mediated phosphorylation of ataxia telangiectasia and rad3-related (ATR) at Ser435 (ATR-pS435), a modification that enhances nucleotide excision repair (NER) by facilitating recruitment of the XPA protein to sites of UV-induced DNA damage. High-throughput methods were developed to quantify ATR-pS435, measure XPA-photodamage interactions, and assess NER function.
View Article and Find Full Text PDFAims: Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase.
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
View Article and Find Full Text PDF