Publications by authors named "Erin M Vasicek"

Non-typhoidal Salmonella (NTS) serovars have a broad host range and cause gastroenteritis in humans. However, invasive NTS (iNTS) bloodstream infections have increased in the last decade, causing 60,000 deaths annually. Human-specific typhoidal Salmonella colonizes and forms biofilms on gallstones, resulting in chronic, asymptomatic infection.

View Article and Find Full Text PDF

L-arabinose inducible promoters are commonly used in gene expression analysis. However, nutrient source and availability also play a role in biofilm formation; therefore, L-arabinose metabolism could impact biofilm development. In this study we examined the impact of L-arabinose on serovar Typhimurium (.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the diversity among various subspecies and serovars, noting their differences in host ranges and pathogenicity, yet highlighting their common ability to form biofilms and cause various types of diseases.
  • It emphasizes that outcomes of infections are influenced by factors like the microbe's growth state, environmental conditions, and the host's immune response, particularly during initial infections.
  • The review also explores the immune responses to both typhoidal and non-typhoidal salmonellae, pointing out knowledge gaps in intestinal and hepatobiliary immunity, and suggests new research directions in understanding chronic infections.
View Article and Find Full Text PDF

Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder.

View Article and Find Full Text PDF

Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process.

View Article and Find Full Text PDF

In Candida albicans, the transcription factor Upc2 is central to the regulation of ergosterol biosynthesis. UPC2-activating mutations contribute to azole resistance, whereas disruption increases azole susceptibility. In the present study, we investigated the relationship of UPC2 to fluconazole susceptibility, particularly in azole-resistant strains.

View Article and Find Full Text PDF