Publications by authors named "Erin M Louwagie"

Successful pregnancy highly depends on the complex interaction between the uterine body, cervix, and fetal membrane. This interaction is synchronized, usually following a specific sequence in normal vaginal deliveries: (1) cervical ripening, (2) uterine contractions, and (3) rupture of fetal membrane. The complex interaction between the cervix, fetal membrane, and uterine contractions before the onset of labor is investigated using a complete third-trimester gravid model of the uterus, cervix, fetal membrane, and abdomen.

View Article and Find Full Text PDF

The coordinated biomechanical performance, such as uterine stretch and cervical barrier function, within maternal reproductive tissues facilitates healthy human pregnancy and birth. Quantifying normal biomechanical function and detecting potentially detrimental biomechanical dysfunction (e.g.

View Article and Find Full Text PDF

Birthing mechanics are poorly understood, though many injuries during childbirth are mechanical, like fetal and maternal tissue damage. Several biomechanical simulation models of parturition have been proposed to investigate birth, but many do not include the uterus. Additionally, most solid models rely on segmenting anatomical structures from clinical images to generate patient geometry, which can be time-consuming.

View Article and Find Full Text PDF

Uterine rupture is an intrinsically biomechanical process associated with high maternal and fetal mortality. A previous Cesarean section (C-section) is the main risk factor for uterine rupture in a subsequent pregnancy due to tissue failure at the scar region. Finite element modeling of the uterus and scar tissue presents a promising method to further understand and predict uterine ruptures.

View Article and Find Full Text PDF

Tissue mechanics is central to pregnancy, during which maternal anatomic structures undergo continuous remodeling to serve a dual function to first protect the fetus in utero while it develops and then facilitate its passage out. In this study of normal pregnancy using biomechanical solid modeling, we used standard clinical ultrasound images to obtain measurements of structural dimensions of the gravid uterus and cervix throughout gestation. 2-dimensional ultrasound images were acquired from the uterus and cervix in 30 pregnant subjects in supine and standing positions at four time points during pregnancy (8-14, 14-16, 22-24, and 32-34 weeks).

View Article and Find Full Text PDF